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measures. Hence, this study constructs and analyzes the bird-insect predation network at Hefei Xingiao
International Airport. [Methods] We collected the struck bird samples from the perimeter and internal
protective facilities of Hefei Xinqiao International Airport between October 2020 and September 2022. After
dissecting and identifying these samples, we selected and recorded insects from the stomach contents. Species
identification was conducted with reference to relevant books and reference. Insects were classified and
counted at the family level. We used complete insects as individual records and, to avoid repetition, pieced
together insect fragments and counted insects based on single body parts. Data were statistically analyzed in
Excel. Network-level and species-level indicators were calculated, and the network robustness under different
disturbances was analyzed by the “bipartite” package in R 4.4.1, and the key species of the network were
identified. [Results] A total of 21 bird species samples were collected, and insects belonging to 39 families of
9 orders were detected. We recorded 120 types of 1 630 bird-insect predation interactions, generating a
bipartite network (Fig. 2). Network-level analysis indicated that compared to the null model (Table 1), the
network showed decreased connectance (0.147), weighted nestedness (15.287), and niche overlap (0.205),
which suggested fewer connections between birds and insects and more independent interspecies interactions
in the network. However, the robustness (0.621), species specialization (0.745), and modularity (0.601) were
high, indicating a higher level of specialization in species interactions and a more stable network. The
network comprised four modules, within which the interactions were intensive (Fig. 3). Node-level analysis
revealed that key bird species in the network were Egretta garzetta, Ardea alba, Vanellus vanellus, Anas
zonorhyncha, and Pica serica, which showed the centrality indices higher than other birds (Appendix 1).
Insects significantly affecting the network stability included species of Carabidae, Gryllotalpidae,
Cricotidae, and Pieridae (Appendix 2). On the basis of species degree, we obtained bird species extinction
curves by removing insects from both directions. Compared with the random network, the interaction
network showed decreased robustness after removal of insects with high species degree first. [Conclusion]
In the man-made ecosystem of an airport, the bird-insect predation network has high modularity and
specialization, being stable. Different bird species may target specific insect groups for predation. Key bird
species in the network were identified, and changes in important insect species in the network can cause
drastic changes in bird populations. It is recommended that future airport bird prevention work focus on these
species, control insect populations from the perspective of species interaction networks, and reduce the
distribution of birds near airports.
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Fig.2 Predation network between 21 bird species and insects at Hefei Xinqiao International Airport
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Table 1 Network-level indicators
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Observed network

K
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Random network




6 EESiE

B LT I B 137 15 - B HU £ I 4 B R 5 a7 9 AR 8RR

* 831 -

4

LAY Turdus eunomus

WIEENG Streptopelia orientalis
WMt Upupa epops

LT RN Phoenicurus auroreus
KI5 KT Acrocephalus orientalis
Rk 223 Vanellus vanellus
F3RUHE Gallinago gallinago
=W Pica serica

95 T. mandarinus

2% Anthus richardi

1 1A 57 Lanius schach

BEWERS Anas zonorhyncha
1% Egretta garzetia

WEE Ardeola bacchus

KA Ardea alba

TR3LFX V. cinereus

495 % Bubulcus coromandus

J\E} Acridotheres cristatellus
KIME Hirundo rustica

[l Scolopax rusticola
W Jynx torquilla

\

HHEL Carabidae
HEEL Pieridae

H A} Limacodidae
B Miridae
AL Curculionidae
FIER] Tridactylidae
R} Tetrigidae
HEWERL Chrysopidae
%75} Pentatomidae
W& Fl Nabidae
17} Cicadellidae

4 fiFl Scarabaeidae

&3

LR} Coreidae

PEHAAF} Oedipodidae

Calliphoridae

AL Apidae

Je iRl Dytiscidae
IR} Gryllotalpidae
EFFL Tenebrionidae
WERL Aeshnidae
KIER] Lygaeidae
4%} Aphidoidae
iRl Nabidae

I FAL Chrysomelidae
AL Muscidae

#Y#} Formicidae

TR 1R} Noteridae
“K#@#} Delphacidae

#a%} Coenagriidae
K i} Tipulidae
L
2P W R Tachinidae
LI IERL Acrididae

kil Gryllidae

R Labiduridae
BENRAEF} Catantopidae

ERIBAL Forficulidae
A} Pyralidae

%55} Conocephalidae
i3}

FREFTHT E Brplin 2K B Bl R AR i 4 MR

Fig.3 Four modules of bird-insect interactions at Hefei Xinqiao International Airport
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species degree.
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Table 2 Resident bird predation network-level indicators

> B A7 H A F N
LEES ek o WRRERE gy EAGLIRE Niche overlap
L Weighted nestedness metric based on .

Network type Connectance  Specialization overlap and decreasing fill Modularity B 1 Insect 19,3 Bird

B9 19 [f5]2
. o [%,I_J # 0.292 0.788 19.259 0.298 0.328 0.224

Resident bird network
BEATL I 2%
0.418+£0.027  0.020 £ 0.007 62.754 £ 5.183 0.024 £0.005 0.878 £0.072 0.951 +0.037

Random network

®3 HEHRMERRT KT

Table 3 Insect node indicators in the resident bird predation network

. PR FE 5 YRh AHrpn Ltk
[ 5 Insect family . o . . :
Species specialization Species degree Betweenness centrality ~ Closeness centrality
iRt Pieridae 0.571 5 0.388 0.078
35 HEL Carabidae 0.727 3 0.287 0.073
it} Gryllotalpidae 0.015 2 0.095 0.073
L8} Coreidae 0.261 2 0.095 0.073
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BR3
ik Tnsect family %ﬁ%%mﬂz’?‘é%& CWWE PhE /Gl ' Eeo i SEVY (3 '
Species specialization Species degree Betweenness centrality ~ Closeness centrality
IRIRF} Gryllidae 0.430 3 0.037 0.070
18R] Labiduridae 0432 2 0.037 0.070
I%F} Pentatomidae 0.273 2 0.061 0.065
WiEF} Calliphoridae 0.324 1 0.000 0.065
%} Nabidae 0.324 1 0.000 0.065
K f6. H1F} Notonectidae 0.361 1 0.000 0.065
PEA R} Oedipodidae 0.622 1 0.000 0.065
% HEL Curculionidae 0.577 1 0.000 0.054
1} Aphidoidae 0.053 1 0.000 0.053
“K#\F} Delphacidae 0.813 1 0.000 0.053
4 F} Chrysopidae 0.884 1 0.000 0.042

FEAE . AL TR, R KPR S =
X 1 SR B 2 T ) B A LA R ) o
PP BRI, #IE H 58 EhE 215 il 1)
THERELFERMEENRR, M T
JR R 1) B L (Zurdo et al. 2023) . AR 5T A,
HE., KAEMLESE S 5EMERRE
ERXTINE, XAlRe TH#HE. ¥HHE.
R H MR H SR EARSEEE, B2
BRAERIESRFETEECNENED
(Nyffeler et al.2018, Davies et al. 2022), Xt
W2 D R L, R R AR iR 4 B
HAE SRR S EEMA, NN
XTI 6 B o ) A

DU ST R — s s, ¥0fh
FERHR BB (P A V) 8 SR A 7L
W28 R AL S5 R B, 55 2 AR R I 5 B
B E Oz, e E20kAE
#.H (Ciconiiformes) %%l (Ardeidae),
AT SRS R RBUL, BARPURAHEAE
MR FHFRIEH, ZRAKBLW, BEHRA
R HIE P RT L ,  HALE N [ Fd T
WA MBIHIR (Braga et al. 2021, ZRifFR%
202100 55 1 AR SR T BN H 52K,
S PR S AN U N NE AV
WHW H, 2 HRER D LB E RN

B IR RMMUERFARE LA — B,
M HRZ & T A SR A% S, FEARSRAGIS
AR ZAERK AT, 1E BV TTIEA R S BRI A 5T
NI T — @M. T AT DL g %
B Ed, Wb MEITES GBEREE 2023), [
I, IZAEE AT B A X KA PR AR R 45 2R
AHT T, BRI i) 5 S8 3L F A [R] ) B e
TR, HMEMAESMNESEIAS . &Ll
BEIRINR, EIRAESI WS YR
SOICINEER & U TITE R N 1 R = Y B L DN
WETaE, MRS ESE AR
4N (MacArthur et al. 1966, Braga et al. 2021 ).
DRI, AR 28 i B 2R i AR A A BB AAIG, ANIF]
BRI B HAFEE R, WRER BH

PR AR S R, X RE 24
B Y AR R o

AR S0 RAE S B ARAE, LR K
T A, #e SRR TR (Gilbert
2009) o {H 2 AN [F] B 255 2] 1) M A 2R ok Y 28
R PR BEFERE () RE A AN [R] 1) o AR DL 5 R
R R N B B BAE M I AR E
HAERIYIRh BIBRIS, 2R 2 B0 Ak A
@I, TR IR LE T Je K4 B ) 2D
WA SRMEMIEFEZ —, SIS ERMHE
BAZFENE, 0 B Rk e mt &8 ok
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HAth BB (CIHma%E 2022). MWAHK 71
IR A B 4 L &P T I, REIHE
TP LT 0T X 48 18 B RE I AOR, XSS R
HIBEANTH R 20 SR A A7 P2 AR RO B iy . 5
&, RIS RIFABZ TR EEME, —
VIR O 5 W 28 Fh AR ELAE DG R o] Re 2> B0
BLE, HRAEHAMY M AT Re 206 0
“% HAFI&E I % e (Herndndez-Davila et al.
2022), BPffftt, Xue B dR7E SR gy &
PG BN, S YERFEEAN N 2% AR E B R
BAEH, BEREAIENLI NI B2 ) ge 2
IS5 28 R e, SN dERR AR T e %
B, gk BN BE S .

32 BY5EISXNHEME R

B0 B R B R S TER, B ()
HIAE AN 28 FR R AR AR AL, G H R ZE T
ST SFEM AT AT, (HESER
AHY)FPEASEAFAEN .l — D I 2% 7y
PRI, A S5 R R E ) 1 2
IR . IAURENE . A0 HE R,
T R R A K A B R R R R B R e X
5 RN I SRR EAR L, R B S 4%
1) 425 4 5 A% 55 0 N 5 4K TH R 355 i A AR A 119 46
), T 55 R 2= PR D 78 1T e R ERE I 2% FRE
PN EER R R EENgt, THENE
RUFKREEEEMH, SNEEERIK A E
JUOE W HRE T M4 1458 (Ohkawara et al.
2022), TAEAH 78 A5 S 30 A S R4 B R 24T
DR T HO R A B A R, R AR
A I X 284 T E B DT R .

X RS, B Sl T K
PERAR AT RN, R RERL PR R
B, SR BT O E R R S, el
VERNRBERBERIFE S e M2, R
1% S AFAE, 1KLL B A 25 (A% 03
e AWHIIRH, ZZEME N E S
A 1 X 2 5 74 ) oT R AHALL (Faustino et al.
2024), T ASAIT 8 H PR 55 71 B 2 47l B 254 1)
FFERBN S, DEES nEE) BEEER

HO MR . DRI, PR B S K B iR e
DR 28 HE AR RV RFAE A AORFEANAR s T 4 5 B A7 AE
2 S EUEYD- 5 5 AH LA FH X 2% 1R 25 R F0 /N
KAEAE (Ramos-Robles et al. 2016), HAERE
CATEBN RN S E R A EER R &
T, XML 5 S 4 i 9 A A = L
Ji S ] RS R RN FEAS A B A )
FENF X 28 45 1) (1) 5
3.3 XS EHPETAERER

F O PEFR PR R B T 1K L ) 25 v (1) SC )
B, CRE SRS RRE, Mg EE R
HAFED RN R RRiR DL R R 1)
ik, EATARE SRR T Yk, M
Zg P E BN EARAY A, R IR L Fh sz 2
By, FTRE 2 B P HOK R iy B B AS R 4%
(Delmas et al. 2019). # EL/b B AEHLIZ
T, AT DA I S a ) 1 B e i A
Bk S, DAM 59 5 2R AEH LI X S B P
Ust, MM PRI SRS SR, &b 5
U o

W& MECRE, RELES, A%, K
. PR TSR =8  OC SN ITEYERF
W28 (R S5 R A D Re I AR v B B DTk, G
SRAX LRl (R A AR AR A A A 256 TR 5%
FEEE AN FE IR o £E R ] B FH L R R AT ) s
il AR Y fak SR E 50 (R E R
MM R 20229, BEWRSJE T 3 Hfaks S Fh,
HE . REEMRCLEGET 2 ek S,
XL 5 pr g5 A OGRS . R, B
OO IX L SRR, AR 2 A Y (A
BHEE PR B . BRI S XA
B, RO MBS S 2, B el e
by WRERL, BERREE R AR B A
Ry T KK ZE A E A, T SN
ARG AL, AR e R 45 B i 4=
o RIS, R MR IR L B S Ay S IR
L, DAE 5 oK R RE Hh g D e ATTHE L3 JA 22 )3
IR . I AR S B I, TRk
PR S RAEN LI X IR TE B A e, AT ek 2> 1
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S, REENLIZIEAT %48 .

52 BRE AR BRI, AT TR %A X
WA 2R A AE A2 AR AL BEA T AT, I HLR B
LRGN A Rt — 241k, @i DNA %78
FE SR A 4 X6 b 22 4 K FL AR E AR LW R R B
fif (Yin etal. 2022), Rk, J54:/Enmast S
KR M FLL RN, H454 DNA %E)7
TR TS K- B R B 2 (1) 6 () B 2 AR AL
R R R, AL OS2 AN [F I B Bt
TR 8k
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Appendix 1  Bird species-level indicators
1. Bird species %ﬂ%ﬂ:ﬂf%%ﬁ %%*fi“ etk ' Ltk '
Species specialization Species degree Betweenness centrality Closeness centrality
% Egretta garzetta 0.617 18 0.118 0.054
K% Ardea alba 0.446 18 0.118 0.054
B4 Pica serica 0.574 10 0.088 0.054
WRIFERY Vanellus cinereus 0.687 8 0.064 0.052
Wil Upupa epops 0.538 7 0.060 0.049
KM Hirundo rustica 0.808 7 0.008 0.040
4-35% Bubulcus coromandus 0.561 7 0.095 0.052
PEWENS Anas zonorhyncha 0.402 6 0.088 0.054
J\ B} Acridotheres cristatellus 0.969 6 0.013 0.045
RELZEXG V. vanellus 0.529 6 0.119 0.054
K15 1A5T Lanius schach 0.440 6 0.088 0.054
I K Acrocephalus orientalis 0.691 5 0.045 0.051
W3 Ardeola bacchus 0.587 3 0.000 0.041
BEHY Turdus eunomus 0.405 2 0.045 0.051
\LIBENS Streptopelia orientalis 0.610 2 0.031 0.048
A4 R4S Phoenicurus auroreus 0.747 2 0.000 0.040
278 Scolopax rusticola 0.264 2 0.021 0.042
558 T. mandarinus 0.487 2 0.000 0.045
J5 R V04 Gallinago gallinago 0.391 1 0.000 0.045
HI%8 Anthus richardi 0.528 1 0.000 0.040
W& Jynx torquilla 0.951 1 0.000 0.036
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Appendix 2 Insect family-level indicators
st Tnsect family %%MM@J(%"?E%& %WJE A Frfn ' ek btk '
Species specialization Species degree Betweenness centrality Closeness centrality
5 H R} Carabidae 0.611 13 0.247 0.034
B iRl Pieridae 0.527 10 0.123 0.027
WRIEF} Gryllidae 0.474 10 0.064 0.032
IRl Labiduridae 0.583 8 0.056 0.032
ISR} Formicidae 0.897 7 0.075 0.031
iRl Gryllotalpidae 0.310 6 0.142 0.033
PER ISR} Catantopidae 0.659 4 0.003 0.028
Wi#E AL Calliphoridae 0.290 4 0.034 0.031
L H R} Curculionidae 0.501 4 0.021 0.029
B Z5 Al Conocephalidae 0.420 3 0.017 0.029
Kigek} Tipulidae 0.457 3 0.037 0.030
B FiEAL Notonectidae 0.304 3 0.025 0.030
S| 8 F} Acrididae 0.414 3 0.001 0.028
i} Muscidae 0.721 3 0.037 0.030
KR} Lygaeidae 0.360 3 0.019 0.025
1%} Pentatomidae 0.686 3 0.011 0.023
ZUF} Coreidae 0.293 3 0.018 0.024
1EF} Coenagriidae 0.462 2 0.001 0.028
4t 8l Scarabaeidae 0.488 2 0.017 0.028
JE AL Dytiscidae 0.399 2 0.001 0.027
B %Al Miridae 0.506 2 0.022 0.024
4R} Apidae 0.389 2 0.001 0.028
25 I} Tenebrionidae 0.658 2 0.008 0.024
R} Aeshnidae 0.628 2 0.001 0.028
R} Tetrigidae 0.488 2 0.017 0.028
5k} Pyralidae 0.715 1 0.000 0.020
Al Limacodidae 0.480 1 0.000 0.021
i F} Ichneumonidae 0.517 1 0.000 0.020
i d% A} Ichneumonidae 0.517 1 0.000 0.020
iR} Tachinidae 0.517 1 0.000 0.026
/K fo H1 R} Noteridae 0.377 1 0.000 0.026
-} Chrysomelidae 0.696 1 0.000 0.020
R} Tridactylidae 0.622 1 0.000 0.021
B4Rl Chrysopidae 0.884 1 0.000 0.016
“KiEE} Delphacidae 0.938 1 0.000 0.020
Ui R} Nabidae 0.324 1 0.000 0.022
1} Aphidoidae 0.165 1 0.000 0.020
-4} Cicadellidae 0.433 1 0.000 0.020
BE#E A} Oedipodidae 0.663 1 0.000 0.022
BRIgFL Forficulidae 0.674 1 0.000 0.018
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