两种鮰科鱼类鳃部寄生的普氏趋蛔虫 形态描述及系统发育分析

张文润 喀迪尔丁·艾尔肯 容梦婕 岳城 郝翠兰* 新疆农业大学动物医学学院 乌鲁木齐 830052

摘要: 2018 年 9 月至 2019 年 10 月,对新疆乌鲁木齐市区及巴楚县的鱼类进行寄生虫病原调查过程中, 在斑点叉尾鮰(Ictalurus punctatus)和云斑鮰(I. nebulosus)鳃部发现有单殖吸虫寄生,两种鱼所寄生 的虫种形态基本一致,仅连接片形态稍有差异,通过形态学鉴定为锚首虫科(Ancyrocephalidae) 趋蛔虫 属(Ligictaluridus)的普氏趋蛔虫(L. pricei)。为验证形态鉴定的准确性,扩增了寄生虫的 28S rDNA 序列,并进行了系统发育分析。结果显示,两种鱼所寄生的单殖吸虫与普氏趋蛔虫的相似度均达 98% 以上,在系统进化树中紧密聚为一支,置信度均为 100;同时,两种虫与普氏趋蛔虫间的遗传距离数值 接近于零,表现出了很高的相似度和亲缘关系。因此根据形态特征和系统发育分析,确定这两种鱼感 染的是同一种寄生虫。研究结果可为新疆人工养殖鮰科鱼类的病害防治提供依据。 关键词:斑点叉尾鮰;云斑鮰;普氏趋蛔虫;形态鉴定;系统发育 中图分类号: O954 文献标识码:A 文章编号: 0250-3263 (2021) 01-088-12

Morphological Description and Phylogeny of the Monogenean Ligictaluridus pricei Parasitizing Gills in Two Species of Catfish Family

ZHANG Wen-Run Kadierding Aierken RONG Meng-Jie YUE Cheng HAO Cui-Lan^{*} College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China

Abstract: During the investigation into parasitic pathogens of fishes in urban areas of Urumqi and Bachu County, Xinjiang, from September 2018 to October 2019, monogenean parasites were found in the gills of both *Ictalurus punctatus* and *I. nebulosus*. The morphology of the parasitic species was basically the same between the two fish species, except for the bar morphology. The parasites were tentatively identified as *Ligictaluridus pricei* of Ancyrocephalidae, *Ligictaluridus* (Fig. 1, 2). To verify the the species identified by morphology, molecular identification was performed with the construction of a phylogenetic tree. The 28S rDNA sequences of parasites from the two fish species were amplified, and the phylogenetic tree and genetic distance matrix were constructed after sequence comparison. The similarity between the parasites from the two species and *L. pricei* was above 98%, and the phylogenetic tree showed that they closely clustered into a

基金项目 国家自然科学基金项目(No. 31860738, 31960737);

^{*} 通讯作者, E-mail: haocuilan@126.com;

第一作者介绍 张文润, 女, 硕士研究生; 研究方向: 水生动物保护学; E-mail: 1661688060@qq.com。

收稿日期: 2020-04-13, 修回日期: 2020-10-22 DOI: 10.13859/j.cjz.202101011

same branch with a confidence of 100 (Fig. 4, 5). The same genetic distance between the parasite from the two species and *L. pricei* was close to zero, showing a high degree of similarity and kinship (Table 3). Therefore, according to the morphological characteristics and phylogenetic analysis, it was determined that these two fishes were infected with the same parasite. The findings of the study can provide a basis for the disease control of artificially cultured catfish in Xinjiang region.

Key words: Ictalurus punctatus; I. nebulosus; Ligictaluridus pricei; Morphology; Phylogenetic

斑点叉尾鲴(Ictalurus punctatus)和云斑鲴 (I. nebulosus)同属于鲇形目(Siluriformes)鲴 科(Ictaluridae)。分布于美国中部流域、加拿 大南部和大西洋沿岸部分地区,后广泛迁徙至 大西洋沿岸(钟立强等 2018,王加鹏 2019)。 我国于 1984 年引进了斑点叉尾鲴和云斑鲴两 种鲴科鱼类(王文斌等 2013)。云斑鲴的大小、 体型与黄颡鱼(Pelteobagrus fulvidraco)非常 相似,只是体色较灰,没有黄颡鱼黄亮,被很 多人误认为黄颡鱼,现新疆水产市场交易的黄 颡鱼都为云斑鲴。

普氏趋蛔虫(Ligictaluridus pricei)属于锚
首虫科(Ancyrocephalidae) 趋蛔虫属。1936
年 Mueller 记述了两种寄生于佛罗里达州的蛔
科鱼类的单殖吸虫,被命名为 Cleidodiscus
pricei和 C. floridanus (原 C. jloridanus)。因这
两个虫种交接器的形态和后吸器的硬化成分不
同,以及对蛔科宿主的明显特异性,BeverleyBurton 1984 年将其移出锁盘虫属(Cleidodiscus),
并提出了趋蛔虫属(Ligictaluridus)(Klassen et al. 1985),在该属中迄今为止有7个物种,另
外 5 种分别为 L. monticellii(Cognetti et al. 1924)、L. mirabilis (Mueller 1937)、L.
bychowskyi (Price et al. 1969)、L. posthon (Klassen et al. 1985)和 L. michaelalicea (Leis et al. 2018)。

本研究记述了斑点叉尾鮰和云斑鮰鳃部寄 生的趋蛔虫的形态学特征,并通过 28S rDNA 基因序列的扩增和分析对其进行分子分类鉴 定,确定这两种鱼类感染同种趋蛔虫普氏趋蛔 虫。为我国鮰科鱼类寄生单殖吸虫的种类及其 分类鉴定补充了基础资料,也为新疆人工养殖 鮰科鱼类的病害防治提供依据。

1 材料与方法

1.1 虫体采集

2018 年 6 月至 2019 年 11 月,在乌鲁木齐 市北园春市场和巴楚县红海水库养殖场采集到 斑点叉尾鮰23 尾、云斑鮰78 尾。将活鱼带回实 验室后,对其进行拍照、测量、称重后,用常 规解剖法将鱼处死。在解剖镜下检查鱼鳃,收 集虫体统计数据,并计算其感染情况。感染率 为感染寄生虫鱼的数量占所采集到鱼总数量的 百分比。将收集到的虫体置于干净的 Eppendorf 管中,分别滴加 75%和 95%酒精,便于后续不 同实验需求。

1.2 形态学鉴定

在解剖镜下挑取形态完整的新鲜虫体或将 保存于 75%酒精中的虫体洗净复水后,挑选形 态完整的虫体置于载玻片上,滴加 4%聚乙烯 醇乳酸酚(伍惠生 1980)固定封片。使用光学 显微镜对虫体玻片标本进行拍照研究,参照文 献(Wheeler et al. 1989, Beverley-Burton et al. 1980,吴宝华 2000)完成对寄生虫的鉴定。标 本保存于新疆农业大学动物医学学院鱼类寄生 虫实验室。

1.3 分子生物学研究

1.3.1 DNA提取、PCR扩增及测序 选取95% 酒精固定的虫体,分别置于 1.5 ml 的灭菌 Eppendorf管,去离子水冲洗并用 TE Buffer缓冲液浸泡过夜,参照上海生工生物技术公司 DNA 提取试剂盒说明书,提取 DNA。选取 28S rDNA 部分序列,扩增引物序列分别为,C1: 5'-GCG AGT GAA CGG AGA TTA GC-3'和

D2: 5'-CCA TTA TTG ACC GTG ATG TAT G-3' (Nasser et al. 1984)。PCR 扩增反应体系为50 µl。 反应条件为, 95 ℃预变性 4 min, 95 ℃变性 1 min, 55 ℃退火 1 min, 72 ℃延伸 90 s, 35 个 循环; 72 ℃再延伸 10 min, 4 ℃保存。将扩 增产物经 1%琼脂糖凝胶电泳分析,切取目的 条带,用全氏金胶回收试剂盒进行纯化,回收 的目的片段连接到 pEASY-T1 载体进行 TA 克 隆,再转化到大肠杆菌 (*Escherichia coli*) DH5α 中,LB 平板培养。PCR 检测后每个样品选取 2 个阳性克隆菌,送上海生工生物工程服务有限 公司测序。

1.3.2 序列比对及系统发育分析 基于所测 得 28S rDNA 序列,与 NCBI 公布的已知序列 进行比对,并下载相关序列(表 1),以小林三 代虫(*Gyrodactylus kobayashii*)相应序列为外 类群,构建系统发育树。将所测得的序列经 SeqMan 生物软件(Jin et al. 2018)进行检查拼 接。用 MEGA 6.0 软件(Koichiro et al. 2013) 中最大似然法(maximum likelihood, ML)构

	(GenBank accession number of the 28S rDNA sequence
Table	1	The Ancyrocephalidae species used for building trees and the
表1	用	于建树的锚首虫种类及其 28S rDNA 序列的 GenBank 登录号

属 Genus	种 Species	宿主 Host species	GenBank 登录 号 Accession number	采集地 Locality
具带虫属/鲻鱼虫属	L. uruguayensis	梭状鲻 Mugil liza	KF442630	巴西 Brazil
Ligophorus	L. pilengas	梭鱼 Liza haematocheilus	JN996824	乌克兰 Ukraine
	L. kaohsianghsieni	梭鱼 L. haematocheila	KY979154	俄罗斯 Russia
嗜丽鱼虫属	C. amieti	喀麦隆旗鱂 Aphyosemion cameronense	KT945076	喀麦隆 Cameroon
Cichlidogyrus	C. tilapiae	副非鲫 Paratilapia pollen	MH767412	马达加斯加 Madagascar
宽海盘虫属	约氏宽海盘虫 E. johnii	金带笛鲷 Lutjanus vaigiensis	EU836193	中国 China
Euryhaliotrema	E. fastigatum	灰笛鲷 L. griseus	MG586859	墨西哥 Mexico
	E. tubocirrus	巴哈马笛鲷 L. synagris	MG586846	墨西哥 Mexico
海盘虫属	驼背鲈海盘虫 H. cromileptis	驼背鲈 Cromileptes altivelis	EU523146	越南 Vietnam
Haliotrema	H. susanae	白边锯鳞鱼 Myripristis murdjan	MG518632	马来西亚 Malaysia
嗜石鲈虫属	小钩嗜石鲈虫 B. parvianchoratus	大斑石鲈 Pomadasys maculatus	KJ571009	中国 China
Bravohollisia	古氏嗜石鲈虫 B. gussevi	断斑石鲈 P. hasta	KJ571007	中国 China
	被覆嗜石鲈虫 B. tecta	大斑石鲈 P. maculatus	KJ571012	中国 China
	平片嗜石鲈虫 B. rosetta	大斑石鲈 P. maculatus	DQ537364	中国 China
锚首虫属	奇异锚首虫 A. paradoxus	梭鲈 Stizostedion lucioperca	AJ969952	斯洛伐克 Slovakia
Ancyrocephalus	河鲈锚首虫A. percae	河鲈 Perca fluviatilis	KF499080	德国 Germany
趋 蛔 虫属 Ligictaluridus	普氏趋蛔虫 L. pricei	云斑 鲄I ctaulurus nebulosus	AJ969939	捷克共和国 Czech Republic
血梗虫属	海鲇血梗虫 H. arii	鲇鱼 Silurus asotus	KF676629	印度 India
Hamatopeduncularia	旗鱼血梗虫 H. thalassini	鲇鱼 S. asotus	KF676631	印度 India
	H. bagre	海鲿 Bagre marinus	MG586873	墨西哥 Mexico
鲇盘虫属 Silurodiscoides	螺茎鲇盘虫 S. campylopterocirrus	低眼巨鲇 Pangasius hypophthalmus	AY841872	中国 China
四锚虫属 Bychowskyella	黄颡四锚虫 B. pseudobagri	黄颡鱼 Pseudobagrus fulvidraco	EF100541	中国 China
伪锚盘虫属 Pseudancylodiscoides	黄颡伪锚盘虫 P. gigi	黄颡鱼 P. fulvidraco	KX812456	中国 China
撒氏虫属	奇异撒氏虫 T. varicus	鲇鱼 Silurus astus	MH094192	中国 China
Thaparocleidus	大茎撒氏虫 T. magnicirrus	鲇鱼 S. astus	MH213065	中国 China
	凶恶撒氏虫 T. asoti	鲇鱼 S. astus	MG601547	中国 China
外类群 Outgroup	小林三代虫 Gyrodactylus kobayashii	金鱼 Carassius auratu	KJ524572	中国 China

建系统进化树及遗传矩阵。用 MAFFT 软件 (Nakamura et al. 2018)对序列进行多重比对 分析。序列保守区的选择采用 Gblocks 0.91b。 构建系统发育树之前采用 Modeltest 软件 (Posada et al. 1998)对联合数据进行最佳模型 筛选。采用贝叶斯法 (Bayesian inferences, BI) 对数据进行系统进化分析。用 MrBayes v3.2.6 软件 (Ronquist et al. 2012)构建系统发育树。 根据 Modeltest 软件 (Posada et al. 1998)对分 析结果以 GTR + I + G 为最佳模型,设置代替 模型为 6 (nst = 6)、位点间变异模型为 invgamma (rates = invgamma),同时建立 4 条 马可夫链,其中 3 条热链, 1 条冷链,共运算 1 000 000 代,每 100 代进行 1 次抽样,节点的可

2 结果与分析

本研究共采集斑点叉尾鮰23 尾,感染趋蛔 虫 67 只;云斑蛔78 尾,感染趋蛔虫 235 只。 斑点叉尾蛔寄生趋蛔虫的感染率为 43%,云斑 蛔寄生趋蛔虫的感染率为 22 %。

信性以后验概率来表示(Ronquist et al. 2003)。

2.1 寄生虫形态学结果

宿主:斑点叉尾鮰

寄生部位: 鳃部

采集地点及时间:乌鲁木齐市北园春市场; 2018 年 11 月至 2019 年 10 月。

形态描述 (图 1): 虫体全长 (653±23.3) µm (623~679 µm), 宽 (29.1±20.1) µm (96.0~ 138.5 µm) (n = 23)。眼点 2 对,后对略大于前 对。咽近似球形,(53±12.7) µm×(57±14.7) µm [(37~62 µm)×(41~97 µm),n = 16]。虫体 的后吸器与体前段区分明显。后吸器长(98.0± 18.6) µm (73.4~121.1 µm),宽(120.5±14.3) µm (79~136 µm) (n = 22)。背中央大钩内外突 分化不明显,钩全长(49.5±3.4)µm(46.0~53.6 µm),钩基部长(47.8±2.6) µm (43.3~51.9 µm),钩尖长(18.7±2.3) µm (15.9~21.3 µm) (n = 23)。背连接片两端膨大,中间部位具有 腮瓣状的凸缘,大小为(21.5±4.7) µm×(71.6 ±6.4) µm [(14.6~26.4 µm)×(60.0~80.5 µm), n = 17]。腹中央大钩较背中央大钩大,钩全长(50.0±3.5)μm(45.4~55.9μm),钩基部长(48.4±2.1)μm(42.4~51.8μm),钩尖长(19.6±0.9)μm(17.1~22.5μm)(n=23)。腹连接片呈倒"V"字形,两端膨大,中间部位向前突出,大小为(15.0±2.7)μm×(60.1±7.6)μm[(11.0~17.5μm)× (56.6~75.6μm),n=17]。边缘小钩为雏形钩,只见6对具明显的柄、钩尖及基突,大小不一致,长9~16μm(n=11)。交接器由交接管与支持器两部分组成。交接管稍弯曲,全长(40.2±2.1)μm(36.5~43.0μm),支持器近端与交接管基部相连,远端稍弯折并有指状的突起,支持器大小为(38.5±2.6)μm(34.6~42.1μm)(n=21)。

宿主: 云斑鲴

寄生部位: 鳃部

采集地点及时间:新疆巴楚县红海水库养 殖场、乌鲁木齐市北园春市场;2018年6月至 2019年11月。

形态描述(图2): 虫体长(539.7±65.7) µm (403.8 ~ 644.8 μm), 宽(127.9 ± 29.6)μm (101.7~207.7 μm) (*n* = 19)。眼点 2 对,后 对略大于前对。咽近似球形,(36.5±4.6) µm× $(39.5 \pm 4.4) \ \mu m \ [(30.2 \sim 47.2) \ \mu m \times (28.4 \sim 47.2)]$ 48.3) μm, n = 11]。虫体的后吸器与体前段区 分明显, 后吸器长 (80.1 ± 13.9) µm (60.9 ~ 100.6 µm), 宽 (118.9±10.3) µm (98.7~140.8 µm) (n=14)。背中央大钩内外突分化不明显,钩 全长(44.1±4.6)μm(30.2~53.9μm), 勾基 部长(40.1±4.0) um(29.7~46.7 um), 勾尖 \pounds (13.8 ± 1.1) μm (11.7 ~ 15.6 μm) (n = 27). 背连接片略平直,中间部位具有腮瓣状的凸缘, 大小为 (14.1 ± 2.3) μm × (64.5 ± 7.9) μm $[(9.6 \sim 17.5) \ \mu m \times (42.2 \sim 76.8) \ \mu m, \ n = 29]_{\circ}$ 腹中央大钩较背中央大钩大,钩全长(45.2 ± 3.2) µm (37.9~52.1) µm, 钩基部长 (40.1± 3.0) µm (34.4~43.3) µm, 钩尖长 (14.1±1.2) μm(11.3~16.8 μm)(n=27)。腹连接片呈倒 "V"字形,两端平直,中间部位向前突出, 大小为 (15.3 ± 2.0) µm × (56.3 ± 5.0) µm

图1 斑点叉尾鮰寄生普氏趋蛔虫形态

Fig. 1 Morphology of *Ictalurus punctatus* parasitic *Ligictaluridus pricei*

- a. 整体腹面观; b. 中央大钩(A)、背连接片(B)、腹联结片(C);
- c. 交接器。

a. Ventral view of the holotype; b. Anchor (A), dorsal bar (B), ventral bar (C); c. Copulatory organ.

图 2 云斑蛔寄生普氏趋蛔虫形态

Fig. 2 Morphology of the parasitic *Ligictaluridus* pricei of Ictalurus nebulosus

a. 整体腹面观; b. 中央大钩(A)、背连接片(B)、腹联结片(C);c. 交接器。

a. Ventral view of the holotype; b. Anchor (A), dorsal bar (B), ventral bar (C); c. Copulatory organ.

[(12.6~21.3) μm×(54.3~59.6) μm, n=27]。 边缘小钩为雏形钩,只见7对具明显的柄、钩 尖及基突,大小不一致,长7~15 μm,第7对 较小(*n* = 16)。交接器由交接管与支持器两部分组成。交接管呈稍弯曲,全长(32.8±3.2)μm (26.9~37.2μm),支持器近端与交接基部相连,远端稍弯折并有指状的突起,支持器大小 为(33.4±3.5)μm(27.7~40.3μm)(*n*=22)。

本描述与国内外已记载的鲴科鱼类的普氏 趋蛔虫进行比较(Klassen et al. 1985, Mezelle et al. 1943, Prost 1973, Beverley-Burton 1984, 王 文彬 2013)其形态描述基本一致(图 3),但 在量度上稍有差异,具体量度比较结果见表 2。

Fig. 3 Original morphology of *Ligictaluridus pricei* (form Klassen et al. 1985)

a. 整体腹面观; b. 中央大钩(A)、背连接片(B)、腹联结片(C);c. 交接器。

a. Ventral view of the holotype; b. Anchor (A), dorsal bar (B), ventral bar (C); c. Copulatory organ.

2.2 序列测定与系统发育分析

将虫种序列分别命名为 L. pricei 1(寄生斑 点叉尾蛔虫种)、L. pricei 2 和 L. pricei 3 (寄生 云斑蛔虫种),所扩增的 28S rDNA 序列长度为 832/826/840 bp。Blast 比对 L. pricei 1 与 L. pricei 相似性为 98.61%, L. pricei 2、L. pricei 3 与 L. pricei 相似性均为 99.80%。

基于 28S rDNA 基因序列的遗传距离分析 表明(表 3), *L. pricei* 1 与 *L. pricei* 的遗传距 离为 0.011, *L. pricei* 2、*L. pricei* 3 与 *L. pricei*

	1adie 2	Comparisons o	i reportea <i>L</i>	igiciaiuriaus pricei	погрпоюдісаі пеаѕиге	nenus	
	美国 USA 712	美国 USA	波兰 Poland	加拿大 Canada		中国 China	;
	Klassen et al. 1985	Mezelle 1943	Prost 19/3 E	severley-Burton 1984	F化 Huaihua 王文彬等 2013	新疆 Xinjiang	本研究 The research
	斑点叉尾鮰 Ictalurus	长鳍真鮰 I. furcatus					
宿主 Host	punctatus 云斑鮰 I. Nebulosus	黑鮰 I. Melas 斑点叉尾鮰	云斑鮰 I. nebulosus	云斑鮰 I. nebulosus	云斑鮰 I. nebulosus	云斑鮰 I. nebulosus	斑点叉尾鮰 I. punctatus
	黄鮰 I. natalis	I. punctatus					
体长 Body length (µm)	620	520 (386 - 928)	380 - 780	510 (280 - 810)	793 (620 - 940)	539.7 ± 65.7 (403.8 - 644.8)	653 ± 23.3 (623 - 679)
体宽 Greatest width (μm)	140	80 (57 - 114)	45 - 155	158 (70 - 405)	134 (110 - 160)	127.9 ± 29.6 (101.7 - 207.7)	$129.1 \pm 20.1 \ (96 \ - \ 138.5)$
咽直径 Pharynx width (µm)	40	30 (24 - 41)	17 - 37	36 (21 - 60)	36 (30 - 45)	$36.5 \pm 4.6 \ (28.4 - 43.8)$	5 3.0 ± 12.7 (37 - 62)
后吸器长 Opisthaptor length (µm)	I	76 (50 - 107)	68 - 107	88 (69 - 126)	84 (75 - 100)	$80.1 \pm 13.9 (60.9 - 100.6)$	98.0 ± 18.6 (73.4 − 121.1)
后吸器宽 Opisthaptor width (µm)		69 (43 - 100)	58 - 130	113 (88 - 161)	108 (90 - 150)	$118.9 \pm 10.3 \; (98.7 - 140.8)$	120.5 ± 14.3 (79 - 136)
背中央大钩 Dorsal bar							
全长 Total length (μm)	48	48 (35 - 74)	37 - 46	41 (38 - 45)	46 (45 - 48)	$44.1 \pm 4.6 (30.2 - 53.9)$	$49.5 \pm 3.4 (46 - 53.6)$
基部长 Shaft length (μm)	I	I	I	40 (34 - 43)	42 (39 - 43)	$40.1 \pm 4.0 \ (29.7 - 46.7)$	47.8 ± 2.6 (43.3 - 51.9)
内突长 Inner root length (μm)	l	l	I	11 (9 - 13)	13 (10 - 15)	ļ	ļ
外突长 Outer root length (μm)							
钩尖长 Point length (μm)	I		I	14 (13 - 17)	16 (14 - 19)	13.8 ± 1.1 (11.7 - 15.6)	18.7 ± 2.3 (15.9 - 21.3)
腹中央大钩 Ventral bar							
全长 Total length (μm)	48	44 (34 - 54)	42 - 49	44 (41 - 48)	49 (47 - 51)	$45.2 \pm 3.2 \; (37.9 - 52.1)$	$50 \pm 3.5 \ (45.4 - 55.9)$
基部长 Shaft length (μm)				43 (38 - 47)	46 (44 - 48)	$40.1\pm3.0\ (34.4-43.3)$	$48.4 \pm 2.1 \; (42.4 - 51.8)$
内突长 Inner root length (μm)	I	I	I	11 (10 - 16)	13 (9 - 15)	I	I
外突长 Outer root length (μm)	I		I	I	I	I	I
钩尖长 Point length (µm)	I		I	14 (10 - 16)	16 (15 - 18)	$14.1 \pm 1.2 \ (11.3 \ \ 16.8)$	$19.6\pm0.9\ (17.1\ -\ 22.5)$
边缘小钩 Marginal hook (µm)	16	13 - 18	15 - 18	13 - 19	14 - 16	10 - 17	9 - 16
背联结片长 Dorsal bar length (µm)	I	I	4 - 5	9 (7 - 17)	13 (12 - 17)	14.1 ± 2.3 (9.6 - 17.5)	21.5 ± 4.7 (14.6 - 26.4)
背联结片宽 Dorsal bar width (µm)	58	45 (29 - 52)	41 - 58	51 (43 - 56)	53 (45 - 58)	$64.5 \pm 7.9 \ (42.2 - 76.8)$	$71.6 \pm 6.4 \ (60.0 - 80.5)$
腹联结片长 Ventral bar length (µm)			8 - 9	12 (7 - 23)	9 (7 - 13)	$15.3 \pm 2.0 \ (12.6 - 21.3)$	$15.0 \pm 2.7 \ (11.0 - 17.5)$
腹联结片宽 Ventral bar width (µm)	50	42 (28 - 47)	38 - 48	47 (40 - 52)	52 (47 - 55)	$56.3 \pm 5.0 \ (49.7 - 59.6)$	$60.1 \pm 7.6 (56.6 - 75.6)$
支持器 Accessory piece (µm)	I	32 (22 - 55)	Ι	30 (23 - 37)	40 (375 - 43)	$33.4 \pm 3.5 \ (27.7 - 40.3)$	$38.5 \pm 2.6 (34.6 - 42.1)$
交接管 Copulatory tube (µm)	37	34 (25 - 54)	30 - 33	33 (24 - 41)	34 (30 - 38)	32.8 ± 3.2 (26.9 - 37.2)	40.2 ± 2.1 (36.5 - 43.0)
统计模式:平均值 = 标准差(最小	\値 - 最大値);一. ヲ	5描述或无数据。St	atistic mode: Me	an±SD (Min - Max); –	No description or data.		

1期

张文润等:两种铜科鱼类鳃部寄生的普氏趋蛔虫形态描述及系统发育分析

• 93 •

94•	,					ź	动物	学杂	ŧ志 C	hinese	Jour	rnal of	Zool	logy					56卷
94・	srDNA sequence	16 17 18 19 20 21 22 23 24 25 26 27 28 29				2	动物	学 杂	志 Cl	hinese	Jour	rnal of	<u>Zool</u>	logy					56卷
り遗传即	ce in 28	14 15															208	602 0.629	572 0.616
序列的	istan	13]														000	208 0.2	602 0.	572 0.:
NA F	etic d	12 1													155	155 0.0	125 0.2	639 0.	605 0.3
S rD	gene	11												289	266 0.	266 0.	311 0.	541 0.	540 0.
3 28	rwise	10											.189	295 0.	.289 0.	289 0.	301 0.	.601 0.	.574 0.
表	ie pai	6										.453	.435 0	.523 0	.464 0	.464 0	.538 0	.540 0	.514 0
	Th	8									0.018	.452 0	.423 0).543 0	.477 0	.477 0).533 0).537 0	.511 0
	able 3	7								0.037	0.035 (0.474 (0.434 (0.530 (0.502 (0.502 (0.546 (0.528 (0.502 (
	T:	9							0.327	0.325	0.313	0.455	0.433	0.502	0.483	0.483	0.515	0.513	0.500
		5						. 0.049	. 0.329	0.335	0.327	0.503	0.466	0.513	0.494	0.494	0.526	0.530	0.541
		4				~	1 0.333	7 0.314	3 0.304	4 0.305	3 0.286	7 0.403	7 0.412	9 0.456	9 0.432	9 0.432	4 0.461	1 0.472	9 0.467
		3			œ	7 0.198	4 0.30	8 0.28′	5 0.33	4 0.33	3 0.33	0 0.42′	8 0.42′	0 0.439	5 0.50	5 0.50	8 0.47	5 0.49	1 0.48
		2		10	84 0.14	33 0.22	31 0.29	34 0.28	24 0.28	14 0.30	37 0.30	22 0.40	19 0.38	53 0.43	98 0.49	98 0.49	74 0.46	14 0.44	21 0.44
		1	<u></u> д	0.6	us 0.5	昰 0.6	0.6	0.6	0.6	0.6	0.6	0.6	e 0.6	鲈 0.6:	鲈 0.6	0.6	鲈 0.6′	虫 0.5	0.5
		GenBank 虫种 Species	1 AY841872 螺茎鲇盘 S. campylopterocirrus	2 MG586859 E. fastigatum	3 MG586846 E. tubocirri	4 EU836193 约氏宽海益 虫 E. johnii	5 KT945076 C. amieti	6 MH767412 C. tilapiae	7 KY979154 L. kaohsianghsieni	8 KF442630 L. uruguayensis	9 JN996824 L. pilengas	10 EU523146 驼背鲈海 盘虫 H. cromileptis	11 MG518632 H. susana	12 KJ571009 小钩嗜石 虫 B. parvianchoratus	13 KJ571012 被覆嗜石 虫 B. tecta	14 DQ537364 平片嗜石 鲈虫 B. rosetta	15 KJ571007 古氏嗜石 虫 B. gussevi	16AJ969952 奇异锚首 <u>!</u> A. paradoxus	17 KF499080 河鲈锚首 虫 A. percae

GenBank 此种 Species 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 23 18 KF676629 海熱山梗 0.465<0.555<0.557<0.555<0.571<0.575<0.666<0.653<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.655<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651<0.651	续 衣 3	e l
18 KF676629 掩軌地梗 0.465 0.552 0.555 0.571 0.575 0.666 0.653 0.655 0.562 0.582 0.655 0.653 0.651 0.511 0.521 虫 H. arii 19 MG58873 H bagre 0.558 0.575 0.563 0.602 0.641 0.643 0.673 0.646 0.762 0.650 0.654 0.696 0.695 0.572 0.583 0.150 모 H. halassini 0.558 0.575 0.563 0.602 0.641 0.643 0.673 0.653 0.653 0.653 0.659 0.669 0.645 0.501 0.511 0.083 0.166 보 H. halassini 0.520 0.483 0.526 0.550 0.621 0.674 0.560 0.671 0.713 0.523 0.598 0.669 0.669 0.645 0.501 0.511 0.083 0.166 보 H. halassini 0.520 0.483 0.576 0.570 0.571 0.578 0.574 0.554 0.560 0.671 0.713 0.523 0.581 0.702 0.500 0.578 0.580 0.496 0.455 20 KFe76631 推動 0.404 0.571 0.511 0.557 0.578 0.574 0.554 0.560 0.671 0.713 0.723 0.500 0.659 0.669 0.669 0.664 0.657 0.511 0.083 0.166 21 F100541 黄菊回锚 0.404 0.571 0.511 0.557 0.578 0.574 0.524 0.541 0.550 0.600 0.533 0.581 0.702 0.702 0.500 0.578 0.586 0.450 0.450 0.450 0.450 22 KX812456 黄菊的锚 0.411 0.558 0.532 0.549 0.650 0.644 0.657 0.672 0.672 0.672 0.702 0.702 0.702 0.561 0.456 0.558 0.455 0.541 0.417 0.381 23 MH094192 奇异橄 0.439 0.586 0.534 0.637 0.614 0.665 0.658 0.568 0.744 0.750 0.770 0.700 0.701 0.611 0.613 0.500 0.569 0.514 0.417 0.381 24 MH0313065 大茎橄 0.439 0.559 0.560 0.660 0.653 0.601 0.599 0.621 0.652 0.588 0.748 0.740 0.740 0.710 0.611 0.613 0.500 0.569 0.512 0.419 0.336 0.097 25 MH0313065 大茎橄 0.433 0.571 0.539 0.560 0.660 0.660 0.660 0.660 0.669 0.669 0.669 0.669 0.669 0.660 0.659 0.561 0.450 0.559 0.551 0.410 0.730 0.730 0.500 0.5	ə 20 21 22 23 24 25 26 27 28 29	
 PMG586873 H. bagre 0.558 0.575 0.563 0.602 0.641 0.643 0.673 0.643 0.645 0.562 0.654 0.696 0.695 0.572 0.583 0.150 DKF676631		
20 KF67631 旗鱼血梗 0.520 0.483 0.526 0.550 0.630 0.621 0.674 0.660 0.671 0.713 0.523 0.598 0.669 0.669 0.645 0.501 0.511 0.083 0.166 虫 H. halassini 21 EF100541 黄颡四輪 0.404 0.571 0.511 0.557 0.578 0.574 0.524 0.547 0.536 0.600 0.533 0.581 0.702 0.600 0.578 0.586 0.450 0.496 0.453 21 EF100541 黄颡四輪 0.404 0.571 0.511 0.557 0.578 0.574 0.524 0.547 0.536 0.600 0.533 0.581 0.702 0.702 0.600 0.578 0.586 0.453 0.496 0.453 22 KX812456 黄颡伪萄 0.411 0.558 0.532 0.549 0.630 0.597 0.657 0.672 0.672 0.672 0.672 0.750 0.750 0.792 0.542 0.531 0.456 0.528 0.455 0.430 24 MH294192 奇异撒氏 0.439 0.586 0.534 0.637 0.614 0.665 0.644 0.657 0.651 0.748 0.740 0.710 0.611 0.613 0.500 0.569 0.512 0.417 0.381 24 MH213065 大茎軟氏 0.435 0.529 0.550 0.664 0.655 0.601 0.599 0.621 0.652 0.586 0.748 0.740 0.740 0.710 0.611 0.613 0.500 0.569 0.512 0.419 0.336 0.097 25 MG601547 凶醫軟氏 0.413 0.571 0.536 0.605 0.700 0.706 0.620 0.604 0.619 0.678 0.576 0.743 0.693 0.693 0.713 0.693 0.610 0.549 0.512 0.419 0.336 0.097		
 21 EF100541 黄颖四锴 0.404 0.571 0.511 0.557 0.578 0.574 0.524 0.547 0.536 0.600 0.533 0.581 0.702 0.600 0.578 0.586 0.450 0.496 0.453 虫 <i>B pseudobagri</i> 22 KX812456 黄颖伪锴 0.411 0.558 0.532 0.549 0.630 0.597 0.650 0.644 0.657 0.672 0.622 0.744 0.750 0.792 0.542 0.531 0.456 0.528 0.455 0.430 23 MH094192 奇异撒氏 0.439 0.586 0.534 0.637 0.614 0.655 0.641 0.665 0.658 0.721 0.738 0.738 0.703 0.657 0.651 0.464 0.557 0.514 0.417 0.381 23 MH094192 奇异撒氏 0.435 0.539 0.535 0.631 0.614 0.655 0.641 0.665 0.658 0.748 0.740 0.710 0.611 0.613 0.560 0.557 0.514 0.417 0.381 24 MH213065 大茎撒氏 0.435 0.539 0.525 0.593 0.664 0.653 0.621 0.652 0.586 0.748 0.740 0.710 0.611 0.613 0.500 0.569 0.512 0.419 0.336 0.097 25 MG601547 凶恶難氏 0.413 0.571 0.536 0.605 0.700 0.706 0.620 0.604 0.619 0.678 0.576 0.743 0.693 0.693 0.610 0.541 0.537 0.501 0.336 0.097 	99	
 22 KX812456 黄籔伪辑 0.411 0.558 0.532 0.549 0.630 0.597 0.650 0.644 0.657 0.672 0.622 0.744 0.750 0.750 0.750 0.792 0.542 0.531 0.456 0.528 0.455 0.430 盘 虫 P. gigi 23 MH094192 奇异撒氏 0.439 0.586 0.534 0.637 0.614 0.626 0.632 0.641 0.665 0.658 0.568 0.721 0.738 0.738 0.703 0.657 0.651 0.464 0.557 0.514 0.417 0.381 盘 T. varicus 24 MH213065 大茎撒氏 0.435 0.539 0.525 0.593 0.664 0.655 0.601 0.599 0.621 0.652 0.586 0.748 0.740 0.740 0.710 0.611 0.613 0.500 0.569 0.512 0.419 0.336 0.097 如 T. magnicitrus 25 MG601547 凶恶撒氏 0.413 0.571 0.536 0.605 0.706 0.620 0.604 0.619 0.678 0.576 0.743 0.693 0.693 0.610 0.474 0.537 0.503 0.421 0.361 0.099 0.0 	96 0.453	
23 MH094192 奇异撇氏 0.439 0.586 0.534 0.637 0.614 0.626 0.632 0.641 0.665 0.588 0.568 0.721 0.738 0.738 0.738 0.703 0.657 0.651 0.464 0.557 0.514 0.417 0.381 虫 T. varicus 24 MH213065 大茎撒氏 0.435 0.539 0.525 0.593 0.664 0.655 0.601 0.599 0.621 0.652 0.586 0.748 0.740 0.740 0.710 0.611 0.613 0.500 0.569 0.512 0.419 0.336 0.097 虫 T. magnicitrus S MG601547 凶恶撒氏 0.413 0.571 0.536 0.605 0.700 0.706 0.620 0.604 0.619 0.678 0.576 0.743 0.693 0.693 0.713 0.609 0.610 0.474 0.537 0.503 0.421 0.361 0.099 0.0	28 0.455 0.430	
24 MH213065 大基撒氏 0.435 0.539 0.525 0.593 0.664 0.655 0.601 0.599 0.621 0.652 0.586 0.748 0.740 0.740 0.710 0.611 0.613 0.500 0.569 0.512 0.419 0.336 0.097 虫 T. magnicirrus 25 MG601547 凶恶撒氏 0.413 0.571 0.536 0.605 0.700 0.706 0.620 0.604 0.619 0.678 0.576 0.743 0.693 0.693 0.713 0.609 0.610 0.474 0.537 0.503 0.421 0.361 0.099 0.0	57 0.514 0.417 0.381	
25 MG601547 凶恶撒氏 0.413 0.571 0.536 0.605 0.700 0.706 0.620 0.604 0.619 0.678 0.576 0.743 0.693 0.693 0.713 0.609 0.610 0.474 0.537 0.503 0.421 0.361 0.099 0.0	69 0.512 0.419 0.336 0.097	
虫 T. asoni	37 0.503 0.421 0.361 0.099 0.043	
26 AJ96939 普氏港鮰虫 0.557 0.445 0.494 0.482 0.543 0.532 0.495 0.495 0.498 0.495 0.544 0.567 0.610 0.578 0.578 0.528 0.081 0.078 0.622 0.684 0.620 0.575 0.624 0.727 0.6 L. pricei	84 0.620 0.575 0.624 0.727 0.669 0.651	
27 普氏趋蛔虫 L. pricei 2 0.547 0.437 0.485 0.474 0.533 0.523 0.487 0.489 0.486 0.534 0.557 0.600 0.568 0.568 0.617 0.083 0.080 0.625 0.687 0.623 0.564 0.612 0.713 0.6	87 0.623 0.564 0.612 0.713 0.657 0.639 0.002	
28 普氏趋蛔虫 L. pricei 3 0.547 0.437 0.485 0.474 0.533 0.523 0.487 0.489 0.486 0.534 0.557 0.600 0.568 0.568 0.617 0.083 0.080 0.625 0.687 0.623 0.564 0.612 0.713 0.6	87 0.623 0.564 0.612 0.713 0.657 0.639 0.002 0.000	
29 普氏港鮰虫 L. pricei 1 0.541 0.447 0.485 0.474 0.546 0.516 0.498 0.489 0.486 0.547 0.557 0.586 0.568 0.568 0.604 0.090 0.087 0.604 0.609 0.551 0.620 0.722 0.6	64 0.609 0.551 0.620 0.722 0.665 0.646 0.011 0.009 0.009	
30 KJ524572 小林三代虫 4.225 2.948 3.001 3.554 3.647 3.416 3.722 4.230 4.357 4.099 5.027 5.588 5.497 5.497 4.411 3.412 3.502 4.404 4.054 4.264 3.889 4.947 4.388 3.4 G kobayashii	54 4.264 3.889 4.947 4.388 3.494 3.688 3.518 3.633 3.633 3.731	31

1 期

• 95 •

的遗传距离都为0.002, L. pricei 1 与 L. pricei 2、 L. pricei 3 的遗传距离都为0.009。L. pricei 2 与 L. pricei 3 的遗传距离小于0.001,不同样本间 的遗传距离非常小。各属间的遗传距离为0.043 ~0.727,本研究描述的趋蛔虫属与锚首虫属间 遗传距离最近,为0.078;与撒氏虫属遗传距离 最远,为0.727。

根据 28S rDNA 序列用最大似然法建树显示(图 4),进化树分为 4 大支。其中具带虫属 (*Ligophorus*)、嗜丽鱼虫属(*Cichlidogyrus*)、 宽海盘虫属(*Euryhaliotrema*)、海盘虫属 (*Haliotrema*)、嗜石鲈虫属(*Bravohollisia*)

图 4 基于最大似然法构建的 28S rDNA 系统发育树

Fig. 4 Phylogenetic tree based on 28S rDNA sequences by Maximum likehood

分支上的数字为 1000 次重复抽样的自检值。图中标尺表示序列之间差异。图中标注的●Ligictaluridus pricei 1 指寄生斑点叉尾蛔虫种; ●Ligictaluridus pricei 2、●Ligictaluridus pricei 3 指寄生云斑蛔虫种。

Numbers at the nodes indicate bootstrap values with 1 000 replicates. The scale in the figure indicates the difference between the sequence. Marked in the figure \bullet Ligictaluridus pricei 1 (parasitic I. punctatus species), \bullet Ligictaluridus pricei 2, \bullet Ligictaluridus pricei 3 (parasitic I. nebulosus species). 聚为一大支;血梗虫属(Hamatopeduncularia)、 鲇 盘 虫 属 (Silurodiscoides) 和 四 锚 虫 属 (Bychowskyella)聚为一支;伪锚盘虫属 (Pseudancylodiscoides) 和 撒 氏 虫 属

(*Thaparocleidus*)聚为一支;普氏趋蛔虫属
(*Ligictaluridus*)与锚首虫属(*Ancyrocephalus*)
聚为一支。而基于 28S rDNA 序列用贝叶斯法
建树显示(图 5),进化树同样分为 4 大支。但

• 97 •

Fig. 5 Phylogenetic tree based on 28S rDNA sequences by Bayesian inference (b) analysis

分支上的数字为 1000 次重复抽样的自检值。图中标尺表示序列之间差异。图中标注的●Ligictaluridus pricei 1 指寄生斑点叉尾蛔虫种; ●Ligictaluridus pricei 2、●Ligictaluridus pricei 3 指寄生云斑蛔虫种。

Numbers at the nodes indicate bootstrap values with 1 000 replicates. The scale in the figure indicates the difference between the sequence. Marked in the figure \bullet Ligictaluridus pricei 1 (parasitic I. punctatus species), \bullet Ligictaluridus pricei 2, \bullet Ligictaluridus pricei 3 (parasitic I. nebulosus species).

1 期

撒氏虫属、伪锚盘虫属、鲇盘虫属、四锚虫属、 血梗虫属聚为一支; 宽海盘虫属、嗜丽鱼虫属、 具带虫属聚为一支; 嗜石鲈虫属、海盘虫属聚 为一支; 普氏趋蛔虫属与锚首虫属聚为一支。 两种进化树中 L. pricei 1 (寄生斑点叉尾蛔虫 种)和 L. pricei 2、L. pricei 3 (寄生云斑蛔虫种) 都与普氏趋蛔虫属聚为一支,置信度为 99, 拓 扑结构较为稳定,再与锚首虫属的虫种聚为一 小分支,说明与锚首虫属的属间亲缘关系最近。 与遗传距离分析结果一致。

3 讨论

本研究发现的寄生于斑点叉尾鮰与云斑鮰 的虫体与国内外已记载的普氏趋蛔虫形态基本 一致。形态学研究结果显示,斑点叉尾鮰寄生 的普氏趋蛔虫虫体较大,背连接片两端稍有内 弯且膨大外翻,中间部位具有腮瓣状的凸缘, 腹连接片肥大呈倒"V"字形,两端膨大,中 间部位向前突出; 云斑蛔寄生的普氏趋蛔虫虫 体较小,背连接片较为平直,中间部位具有鳃 瓣状的凸缘,腹连接片呈平直的倒"V"字形, 中间部位向前突出。Beverley-Burton(1984) 认为, 普氏趋蛔虫的背腹连接片形态以及大小 的变化是由于盖滑压力不同所致,但是,这种 可变性的程度和原因以前没有进行过调查。本 研究发现, 普氏趋蛔虫连接片的不同可能跟其 宿主不同有关,其次可能与采集地点及环境等 差异有关。因此, 趋蛔虫属的背腹连接片数据, 不适合作为物种分类的重要标准。

对于所有单殖吸虫而言,其几丁质结构都 被认为是形态学研究中最可靠的分类特征,锚 首虫亦是如此。但在实际物种分类过程中,水 温、宿主个体大小及宿主分布等因素都会影响 虫体的形态特征。故有学者提出,因为形态学 特征的可变异性,在锚首虫物种的分类鉴定中 使用形态学和生物统计学特征不是非常可靠的

(Lambert 1977)。我们选用 28S rDNA 利用以 PCR 和序列分析为基础的分子分类学方法,从 分子水平对普氏趋蛔虫进行亲缘关系探讨和系 统进化分析,可有效避免虫体形态改变和显微 镜观察带来的误差。基于 28S rDNA 序列的系 统发育分析结果显示,两种宿主的虫种都和普 氏趋蛔虫聚为一支,其置信度都为 100。在遗 传矩阵中两个虫种与普氏趋蛔虫的种间距离在 0.000~0.002 之间。说明两种鮰科鱼类感染同 种虫体。

近年来,越来越多的鱼类被大量引入我国。 此次在新疆首次发现趋蛔虫,斑点叉尾鲄和云 斑鲄都为外来引进鱼类,寄生的单殖吸虫应当 也是同时被引入,这些鱼种如果被投放到自然 流域有可能会感染到我国其他鱼种,对其造成 一定的威胁。根据研究结果显示,由于引进鱼 类的单殖吸虫侵染率较高(Guilherme 2019), 建议所有进口的鱼类进行隔离检查和相应的对 症治疗。进口的寄生单殖吸虫鱼类不仅会给养 殖者造成成本损失,而且也能够改变和影响被 引入地鱼类的寄生虫区系。

参考文献

- Beverley-Burton M. 1984. Monogenea and Turbellaria // Margolis L, Kabota Z. Guide to the Parasites of Fishes of Canada. Charlottesville: Canadian Journal of Fisheries & Aquatic Sciences, 5–209.
- Beverley-Burton M, Suriano D M. 1980. Haplocleidus dispar (mueller, 1936) and Pterocleidus acer (mueller, 1936) (Monogenea: Ancyrocephalinae) from Lepomis gibbosus L. (Pisces: Centrarchidae) in Ontario, Canada: anatomy and systematic position. Canadian Journal of Zoology, 58(4): 661–669.
- Cognetti, Martiisl L. 1924. Nuovo Gyrodactylide parassita nella cavita olfattiva di *Amiurus catus* L. Bulletin Society Nature, 16(2): 76–81.
- Jin J Q, Sun Y B. 2018. AutoSeqMan: batch assembly of contigs for Sanger sequences. Zoological Research, 39(2): 123–126.
- Klassen G J, Beverley-Burton M. 1985. *Ligictaluridus* Beverley-Burton, 1984 (Monogenea: Ancyrocephalidae) from catfishes (Siluriformes: Ictaluridae) in North America with redescriptions of the type species, *ligictaluridus pricei* (Mueller, 1936), and three others. Canadian Journal of Zoology, 63(3): 715–727.

Koichiro T, Glen S, Daniel P, et al. 2013. MEGA6: Molecular

Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30(12): 12.

- Lambert A.1977. The oncomiracidium of Ancyrocephalus paradoxus Creplin, 1839 (Monongenea, Monopisthocotylea), parasite of Sander lucioperca (Teleostei, Percidae). Annales de Parasitologie Humaine et Comparee, 52(5): 493–505.
- Leis E, Easy R, MacLean L, et al. 2018. *Ligictaluridus michaelalicea* n. sp. (Monogenea: Dactylogyridae) from flathead catfish (*Pylodictis olivaris*) in the upper Mississippi River, including remarks on taxonomy influencing monogenean treatment regulation in the United States. Parasitology Research, 117(30): 825–830.
- Mizelle J D, Cronin J P. 1943. Studies on monogenetic trematodes. X. Gill parasites from Reelfoot Lake fishes. American Midland Naturalist, 30(1): 196–222.
- Mueller J F. 1936. New Gyrodactyloid trematodes from North American fishes. Transactions of the American Microscopical Society, 55(4): 457–464.
- Mueller J F. 1937. Further Studies on North American Gyrodactyloidea. American Midland Naturalist, 18(2): 207.
- Nakamura T, Yamada K D, Tomii K, et al. 2018. Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics, 34(14): 14.
- Nasser H, Bernard M, Jean-Pierre B. 1984. The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucleic Acids Research, 12(8): 3563.
- Posada D, Crandall K A. 1998. Model test: testing the model of DNA substitution. Bioinformatics 14(9), 817–818.
- Price C E, Mura A. 1969. The proposed synonymy of the

monogenean genera *Cleidodiscus* Mueller, 1934 and *Úrodeidus* Mueller, 1934, with the proposal of *Cleidodiscus bychowskyi* sp.n. Proceedings of the Helminthological Society of Washington, 36(1): 52–55.

- Prost M. 1973. Fish Monogenoidea of Poland. III. Parasites of *Ictalurus nebulosus* (Lesueur). Revision of genera *Cleidodiscus* Mueller, 1934 and *Urocleidus* Mueller, 1934. Acta Parasitologica Polonica, 21(3): 315–326.
- Ronquist F, Huelsenbeck J P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12): 1572–1574.
- Ronquist F, Teslenko M, Mark P, et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3):539–542.
- Wheeler T A, Beverley-Burton M. 1989. Systematics of Onchocleidus Mueller, 1936 (Monogenea: Ancyrocephalidae. Canadian Journal of Zoology, 67(3): 706–713.
- Guilherme G S. 2019. 利用本地和侵入胎生鱼类(Poeciliidae, Teleostei)进行城市河流污染的综合生物学评估. 杨凌: 西北 农林科技大学硕士学位论文.
- 王加鹏. 2019. 斑点叉尾蛔养殖管理要点. 科学养鱼, (2): 37-38.
- 王文彬, 唐琳, 刘良国. 2013. 斑点叉尾鱽寄生单殖吸虫中国一新 纪录属(锚首虫科). 华南师范大学学报: 自然科学版, 45(2): 87-89.
- 吴宝华, 郎所, 王伟俊, 等. 2000. 中国动物志: 扁形动物门: 单 殖吸虫纲. 北京: 科学出版社, 54-624.
- 伍惠生. 1980. 聚乙烯醇封固鱼类寄生虫和小型节肢动物的方法. 动物学杂志, 15(1): 54-55
- 钟立强, 王明华, 陈校辉, 等. 2018. 世界斑点叉尾鮰产业近况 II: 中国斑点叉尾鮰产业发展与展望. 水产养殖, 39(9): 7-11.