鸻形目鸟类线粒体基因组测序策略

胡超超^① 张怡^① 张晨岭^② 吴云豪^① 陈婉^③ 李可欣^① 常青^①* ① 南京师范大学生命科学学院 南京 210046; ② 江苏第二师范大学生化系 南京 210013; ③ 江苏开放大学环境与生态学院 南京 210036

摘要: 德形目(Charadriiformes),全世界约有384个物种,分属于19科94属,种类繁多、分布广泛, 是研究迁徙和觅食行为的良好材料。近年来,线粒体基因组的研究快速发展,由于样品难以收集,缺 乏系统的测序策略, 德形目鸟类线粒体基因组的研究相对滞后。引物设计对聚合酶链式反应(PCR) 至关重要,一个成功的PCR实验依赖于高质量的特异性引物,本研究拟设计一套用于德形目鸟类线粒 体基因组扩增的通用引物。对 GenBank 中现有的德形目物种线粒体基因组进行多重比对,发现若干个 保守性区域,本研究在该区域设计13对扩增德形目鸟类线粒体基因组的通用引物,扩增的目的片段长 度均在1.5 kb 左右。我们选取4个物种,即灰头麦鸡(Vanellus cinereus)、丘鹬(Scolopax rusticola)、 白腰草鹬(Tringa ochropus)和针尾沙锥(Gallinago stenura),进行 PCR 扩增验证,设计的引物在4 个物种中均能顺利扩增、测序,该引物在德形目鸟类线粒体基因组扩增中的具有普遍适用性。本研究 设计的13 对通用引物在扩增德形目物种线粒体全基因组中具有较强的应用价值,将为德形目的系统发 育关系、种群遗传学和生物地理学研究提供珍贵的资源。

关键词: 鸻形目; 线粒体基因组; 聚合酶链式反应; 通用引物

中图分类号: Q958 文献标识码: A 文章编号: 0250-3263 (2018) 05-769-12

Strategy of Amplification and Sequencing of the Mitochondrial Genome of Charadriiformes

HU Chao-Chao⁽¹⁾ ZHANG Yi⁽¹⁾ ZHANG Chen-Ling⁽²⁾ WU Yun-Hao⁽¹⁾ CHEN Wan⁽³⁾ LI Ke-Xin⁽¹⁾ CHANG Qing^{(1)*}

College of Life Sciences, Nanjing Normal University, Nanjing 210046;
 2 Faculty of Life Science and Chemical Engineering, Jiangsu Second Normal University, Nanjing 210013;
 3 College of Environment and Ecology, Jiangsu Open University
 (The City Vocational College of Jiangsu), Nanjing 210036, China

Abstract: Charadriiformes (Vertebrate: Aves) is a species-rich order with approximately 384 species belonging to 94 genera of 19 families (Fig. 1), and contains some model species to study migration and foraging behavior. The resources of mitogenome have rapidly accumulated in recent years due to the

第一作者介绍 胡超超, 男, 实验师; 研究方向: 动物生态学; E-mail: huweichen@126.com。

收稿日期: 2017-12-20, 修回日期: 2018-08-13 DOI: 10.13859/j.cjz.201805012

基金项目 江苏省高校自然科学研究项目(No. 16KJB180003 和 No. 16KJB180012),江苏开放大学(江苏城市职业学院)"十二五"课题项目(No. 15SEW-Y-018);

^{*} 通讯作者, E-mail: Qingchangnj@163.com;

advanced genomic sequencing, however, Charadriiformes mitogenome has not been well studied (Table 2). Primer design has crucial importance to PCR experiments, and a successful PCR experiment depends on the quality and specificity of the primers. After the multiple sequence alignment, we found many conserved regions. Then, we designed the forward and reverse primers according to the overlapping and conserved regions. In this study, we designed 13 pairs of primers, with the amplified target fragment for each pair about 1.5 kb in length (Fig. 2, Table 1). In order to test the proposed method and prove the performance of these primer pairs, the whole primer settings were applied to amplify and sequence the mitochondrial genomes of four birds: Grey-headed Lapwing *Vanellus cinereus*, Eurasian Woodcock *Scolopax rusticola*, Green Sandpiper *Tringa ochropus*, and Pin-tailed Snipe *Gallinago stenura* (Fig. 3). The results proved that these primer pairs were efficient. Taken together, the designed primer pairs are an effective toolkit of amplification and sequencing for the Charadriiformes mitogenomes. Our work provides a valuable resource facilitating further study of molecular systematics, population genetics, and phylogeography of Charadriiformes.

Key words: Charadriiformes; Mitochondrial genome; Polymerase chain reaction, PCR; Universal primers

线粒体是亚细胞结构的细胞器,有研究认 为其起源于 α 变形菌共生细菌, 原细菌的大部 分基因已经丢失或转移到核基因中, 仅有少数 基因保留在如今的线粒体中(Boore 1999)。脊 椎动物线粒体基因组一般为 15~20 kb 的环状 双链DNA分子,由13个蛋白编码基因(PCGs)、 2个核糖体基因(12S rRNA 和 16S rRNA)、22 个转运 RNAs(tRNAs)和一个非编码控制区组 成(Boore 1999)。13个线粒体蛋白编码基因分 别为 2 个 ATP 合成酶亚基 (ATP8 和 ATP6)、3 个细胞色素氧化酶亚基(COI~COIII)、7个 nadh 还原酶亚基 (ND1 ~ ND6 和 ND4l) 和细 胞色素 b (Boore 1999)。13 个线粒体蛋白编码 基因与核基因编码的亚基结合,形成细胞氧化 磷酸化所需的4种酶-复合物(共5种复合物), 细胞中约 95%的能量由线粒体提供(da Fonseca et al. 2008, Koonin 2010)。线粒体在能量代谢 (energy metabolism)、细胞凋亡(cell apoptosis)、寿命 (aging) 及多种疾病中具有重 要作用(Hu et al. 2006)。

线粒体基因作为遗传标记应用于动物系统 发生研究近 20 年,随着分子生物学技术的发 展,线粒体基因组的研究更加经济、可靠、便 捷。作为研究进化的重要分子标记,广泛应用 于分子系统和进化、种群遗传、生物地理及杂 交等方面的研究(Morin et al. 2010, Ma et al. 2012, Cameron 2014)。线粒体基因组比单个基因提供更多的遗传信息,基因组水平的结构特征可用于系统发生关系重建(Boore 2006),如基因重排(Timmermans et al. 2012)、基因组成异质性(Wei et al. 2010)、控制区的进化模式(Li et al. 2012)等。线粒体基因组代表着一个小的基因组,包含基因组结构特征,其测序工作经济高效。随着测序技术的发展,线粒体基因组研究得到迅猛发展,应用线粒体基因组为遗传标记己成功阐明很多动物类群的系统发生关系(Pons et al. 2014, Yuan et al. 2015, Li et al. 2016),特别在物种分歧时间估计上具有较好的效果(Powell et al. 2013)。

 构建的系统发生关系差异较大,一直备受争议

(Livezey 2010, Friesen 2015)。受趋同进化 (homoplasies)影响,一些类群在形态和生活 习性方面具有较强的相似性,选择适合重建系 统发生关系的形态特征困难重重(Björklund 1994, Chu 1995)。

分子系统学研究将鸻形目划分为鸻类 (Charadrii)、鹬类 (Scolopaci) 和鸥类 (Lari) 三大类群,支持鸻形目的单系性(Ericson et al. 2003, Paton et al. 2003, Baker et al. 2007, Gibson et al. 2012, Smith et al. 2015)。Paton 等 (2006) 用 14 个线粒体基因研究鸻形目 16 科的系统发 生关系, 部分支系的支持度较低, 且各科仅一 个代表物种; Fain 和 Houde (2007) 用 2 个线 粒体基因(12S rRNA、16S rRNA)和5个核基 因 (rag-1, gpd3-5, adh5, fgb7, myo-2)标记 研究了鸻形目中15个科的进化关系; Baker 等 (2007)用3个线粒体基因(12SrRNA、Cytb 和 ND2) 和 1 个核基因 (rag-1), 通过增加样 本量,构建鸻形目属级分类阶元的系统发生关 系。当前应用于鸻形目系统发生研究的分子标 记较少(Ericson et al. 2003, Paton et al. 2003, Baker et al. 2007, Gibson et al. 2012, Smith et al. 2015),代表类群不足,基于线粒体基因组水平 的研究甚少。鸻形目科级的高级阶元系统发育 关系尚未根本解决,分类体系争议较大,尤其 在鸻类和鸥类中(图1)。 鸻形目鸟类的分子系 统学研究工作较为贫乏,对其区系起源、物种 分化、地理分布格局的相关研究甚少,时间尺 度上物种多样化速率(diversification rates)变 化以及地质历史事件对物种多样化速率的影 响,仍鲜有研究。随着分子系统学的发展,系 统发育关系重建、分歧时间估算等分析方法的 广泛应用,为揭示鸻形目鸟类物种多样性起源 和维持的机制提供了可行的技术路线(Stein et al. 2015).

尽管已有鸻形目鸟类线粒体基因组的研 究,但线粒体基因组的扩增、测序策略、引物 设计的技术问题,并未有报道。因此,本研究 拟通过设计若干对通用引物,完成对鸻形目鸟 类线粒体全基因组的扩增,为鸻形目鸟类的系 统发生学、种群遗传学和系统地理学等研究提 供便捷的分子标记。

1 材料与方法

1.1 实验材料

实验样品收集于江苏省南通市如东小洋口(32°32′43.41″N,121°06′09.01″E)海边滩涂的废弃雾网上。用消毒的手术刀剪取约50g的肌肉组织,编号后保存于无水乙醇中,放置在南京师范大学江苏省生物多样性与生物技术重点实验室。共收集到鸻形目4个物种,鸻科的灰头麦鸡(*Vanellus cinereus*,样品编号NJNU-Vcin02)和鹬科的丘鹬(*Scolopax rusticola*,NJNU-Srus01)、白腰草鹬(*Tringa ochropus*,NJNU-Toch08)、针尾沙锥(*Gallinago stenura*,NJNU-Gste21)。

1.2 基因组 DNA 提取

肌肉组织先用蛋白酶 K 消化, 然后用饱和 酚氯仿法抽提基因组 DNA (Sambrook et al. 1989)。抽提完成后,用 1%的琼脂糖凝胶电泳 检测 DNA 质量,紫外分光光度计检测其浓度 (Nano-200 超微量核酸蛋白分析仪), - 80 ℃ 保存 DNA 母液备用。

1.3 引物设计

登陆 GenBank 搜索目前已测定的 18 种鸻 形目鸟类的线粒体基因组。使用 MEGA 6.0 (Tamura et al. 2013)中的 Muscle 程序进行序 列比对,用 BioEdit (Hall 1999)进行手工校正。 根据基因比对结果,选取线粒体基因组中保守 的序列,遵循引物设计原则(张新宇等 2004), 使用引物设计软件 Oligo Version 7.60 (Rychlik 2007)和 Primer Premier Version 6.24 (Lalitha 2004),在保守位置的设计相应的 PCR 引物, 目的片段大小约 1.0~1.5 kb。引物由生工生物 工程(上海)股份有限公司合成。

1.4 PCR 扩增及测序

反应体系为 30 µl, 含 0.5 U Ex Taq DNA 聚

Fig. 1 Family-level phylogenetic relationships of Charadriiformes (Hu et al. 2017)

a. 基于 *rag*-1 的系统发育关系; b. 基于 14 个线粒体基因(*ND*1、*ND*2、*CO*I、*CO*II、*ATP*8、*ATP*6、*CO*III、*ND*3、*ND*41、*ND*4、*ND*5、Cyt b、12S rRNA、16S rRNA)的系统发育关系; c. 基于 3 个线粒体基因(12S、tRNA^{Val}、16S rRNA)和 3 个核基因(*adh*-5、*gpd*3-5、*fgb*-7)的系统发育关系; d. 基于 3 个线粒体基因(12S rRNA、*ND*2、Cyt b)和 1 个核基因(*rag*-1)的系统发育关系。蓝色虚线框表示系统发生地位不明确。

a. Based on *rag*-1; b. Based on 14 mitochondrial genes (*ND*1, *ND*2, *CO* I, *CO* II, *ATP8*, *ATP6*, *CO*III, *ND3*, *ND4*I, *ND4*, *ND5*, Cyt *b*, 12S rRNA, 16S rRNA); c. Based on 3 mitochondrial genes (12S rRNA, tRNA^{Val}, 16S) and 3 nuclear genes (*adh*-5, *gpd*3-5, *fgb*-7); d. Based on 3 mitochondrial genes (12S rRNA, *ND*2, Cyt *b*) and 1 nuclear gene (*rag*-1). The blue dotted line box indicates that the phylogenetic relationship is unclear.

Laridae. 鸥科; Rynchopidae. 剪嘴鸥; Sternidae. 燕鸥科; Stercorariidae. 贼鸥科; Alcidae. 海雀科; Glareolidae. 燕鸻科; Turniciformes. 三 趾鹑科; Pedionomidae. 领鹑科; Thinocoridae. 籽鹬科; Jacanidae. 水雉科; Rostratulidae. 彩鹬科; Scolopacidae. 丘鹬科; Haematopodidae. 蛎鹬科; Ibidorhynchidae. 鹮嘴鹬科; Recurvirostridae. 反嘴鹬科; Charadriidae. 鸻科; Pluvianellidae. 麦哲伦鸻科; Burhinidae. 石鸻科; Chionidae. 鞘嘴鸥科。

合酶(Takara), 1 × PCR Buffer(Takara), dNTPs 0.1 mmol/L,上、下游引物各 1 µmol/L,DNA 模板 50~100 ng。聚合酶链式反应在 ABI 9700 型 DNA 扩增仪 (Applied Biosystems) 上进行。 循环参数: 95 ℃预变性 8 min; 95 ℃变性 30 s, 55 ℃退火 30 s (每循环降 0.2 ℃), 72 ℃延伸 60 s,循环 25 次;95 ℃变性 30 s,50 ℃退火 30 s,72 ℃延伸 60 s,循环 10 次;循环结束后 72 ℃补齐 8 min。PCR 扩增产物用溴酚蓝着色, 经溴化乙啶染色的 1%琼脂糖凝胶电泳检测片 段大小及浓度;电泳缓冲液为1 × TAE,电压 为 10 V/cm,G-BOX 紫外凝胶成像系统检测 PCR 扩增结果。

PCR 扩增产物使用 AxyPrep PCR Cleanup Kit (Amersham Pharmacia Biotech, Piscataway, USA) 纯化, 纯化后的 PCR 产物在 ABI 3730 DNA analyzer 自动测序仪(Applied Biosystems, Foster City, California, USA) 测序, 测序试剂 为 BigDye。扩增和测序采用相同引物, 均采用 双向测序方法, 有些测序效果较差的个体, 在

片段中间设计测序引物重新测序。序列测序结 果用 DNASTAR Lasergene Version 13.0 软件包 中的 Seqman 程序进行序列排列和拼接,生成 一致序列。

2 结果

2.1 引物设计

本研究共设计 13 对引物, 引物片段长度为 (21±3) bp (15~23 bp), 退火温度为 (52± 0.6) ℃ (51~53 ℃)(表1)。扩增产物长度在 950~2 300 bp 之间, 相邻两条引物对应的基因 序列重叠大小在 100~400 bp 之间, GC 百分含 量在 40%~60%之间 (图 2)。

2.2 PCR 扩增结果

表1 本研究中设计的引物序列

Table 1	Primers for am	plifving com	plete mtDNA	genome of	Charadriiformes

引物 Prime	J er	引物序列(5′ - 3′) Primer sequence(5′ - 3′)	碱基数(bp) Base number	退火温度(℃) Annealing Temperature	片段长度(bp) Length
Cha01	F	ATGGCACTGAAGATGCCAAG	20	52	1 250
	R	ATTTCAKCTTTCCCTTACGGTAC	23	52	
Cha02	F	GCATTCAGCTTACACCTGAAAG	22	52	1 700
	R	CATTTACCRAGCTCTGCCAC	20	53	
Cha03 F R	F	CCAGGTCGGTTTCTATCTATG	21	52	1 400
	R	GGTATGGGCCCGATAGC	17	52	
Cha04 F R	F	AAAGGGTCACTRTGATAAAGTGAA	24	51	1 500
	R	TTCATGTTGAGTTGCAAGCTCAT	23	52	
Cha05 F R	F	CCGARGGCCTTCAAAGCC	18	53	2 000
	R	ATTTAGRCTTGACARGGCTATGTAAT	26	52	
Cha06	F	AAGGAAGGAATCGAACCCTC	20	52	1 750
	R	TGGTAGGARTGTGCTTGGTG	20	52	
Cha07	F	CAGGYCTACGAAACCAACC	19	53	1 550
	R	GTTGAGCCGAAATCAACTGTC	21	52	
Cha08 F	F	GTATAHTAATTACAATTGACTTCCAATCT	29	53	2 300
	R	ACTTTTACTTGGATTTGCACCAAG	24	52	
Cha09 F R	F	GTTTAACCCAAACATTAGACTGTGA	25	53	2 100
	R	GTAGGGAHCCRAAGTTTCATCA	22	53	
Cha10 I	F	GCCCCAAAYCTMCGAAAATC	20	52	1 250
	R	GTAAAATACCAGCTTTGGGAG	21	52	
Chall	F	GTTTAWMMAAAACATTGGTCTTGTAA	26	51	1 300
	R	CCAGAGGCGCAAAAGAGC	18	52	
Cha12	F	ATWCTTTCCCCCTACACCC	19	51	1 100
	R	CGCGGTGGCTGGCAC	15	53	
ChaCR	F	ACYAARCCAACYACYCCATA	20	52	$1\ 300 \sim 1\ 500$
	R	ACTAAACCAACTACCCCATA	20	52	

• 774 •

Fig. 2 The map of the mitochondrial genome of Charadriiformes (a) and the primers location in the genome (b)

CR 表示控制区;图 b 中的阿拉伯数字表示引物序号,L 和 H 分别代表引物的轻链和重链。

CR. Control region; L and H represented the light and heavy DNA strands, respectively.

以提取的 4 个物种的基因组 DNA 为模板, 分别用本研究设计的 13 对通用引物进行 PCR 扩增。经电泳检测,12 号引物在丘鹬和针尾沙 锥中以及 13 号引物在丘鹬中扩增的条带不清 晰,而其他扩增产物均能获得单一的目的 DNA 片段,条带清晰、明亮,特异性扩增产物大小 为 1.5 kb 左右,引物扩增效果良好。

为进一步检验扩增的目的片段是鸻形目线 粒体 DNA,将 PCR 产物纯化、测序后,在 NCBI 的核酸序列数据库中搜索与比对,结果显示匹 配度最高的序列均为鸻形目线粒体基因,表明 扩增产物是目的片段。因此本研究设计的 13 对简并引物能针对多数鸻形目鸟类,扩增理想 的目的片段,具有较好的效果(图 3)。

2.3 鸻形目鸟类线粒体基因组的基本特征

比较分析鸻形目中已发表的 19 个物种的 线粒体基因组(表 2),基因组长度显示中等大 小的变异,平均长度为 16 807 bp(SD = 179.66, *n* = 18),其中,白额燕鸥线粒体基因组最小 (16 357 bp),灰头麦鸡最大(17 074 bp),差 距达 717 bp;长度差异多由控制区的突变导致。 鸻形目鸟类线粒体基因组的组成与结构非常保 守,基因排列顺序与典型鸟类线粒体基因组排 列方式一致,未发现基因重排现象(图 2)。鸻

图 3 线粒体基因组扩增产物电泳结果

Fig. 3 Agarose gel electrophoresis of PCR products

a. 灰头麦鸡; b. 丘鹬; c. 白腰草鹬; d. 针尾沙锥。

a. Grey-headed Lapwing;b. Eurasian Woodcock;c. Green Sandpiper;d. Pin-tailed Snipe.

泳道 M 为 DNA Marker 2000, 分子量从大到小依次为2000、1000、750、500、250 和 100 bp; 泳道 1 ~ 13 表示引物 Cha01 ~ Cha12 和 ChaCR 的扩增产物。

M represented the DNA Marker 2000, and the length 2 000, 1 000, 750, 500, 250 and 100 bp, respectively. 1 - 13 represented the primers name of Cha01 - Cha12 and ChaCR.

序号 Order	物种名 Species name	GenBank登陆号 Accession no.	长度(bp) Size
	蛎鹬科 Haematopodidae		
1	美洲蛎鹬 Haematopus ater	AY074886	16 791
	反嘴鹬科 Recurvirostridae		
2	反嘴鹬 Recurvirostra avosetta	KP757766	16 897
	鸻科 Charadriidae		
3	灰头麦鸡 Vanellus cinereus	KM404175	17 074
4	凤头麦鸡 V. vanellus	KM577158	16 795
	水雉科 Jacanidae		
5	水雉 Jacana jacana	KJ631049	16 975
6	美洲水雉 J. spinosa	KJ631048	17 079
	丘鹬科 Scolopacidae		
7	丘鹬 Scolopax rusticola	KM434134	16 984
8	翻石鹬 Arenaria interpres	AY074885	16 725
9	勺嘴鹬 Eurynorhynchus pygmeus	KP742478	16 707
10	针尾沙锥 Gallinago stenura	KY056596	16 899
	鸥科 Laridae		
11	棕头鸥 Chroicocephalus brunnicephalus	JX155863	16 769
12	黑头鸥 C. ridibundus	KM577662	16 807
13	黑嘴鸥 C. saundersi	JQ071443	16 725
14	黑尾鸥 Larus crassirostris	KM507782	16 746
15	黑背鸥 L. dominicanus	AY293619	16 701
16	遗鸥 Ichthyaetus relictus	KC760146	16 586
17	白额燕鸥 Sternula albifrons	KT350612	16 357
	贼鸥科 Stercorariidae		
18	灰贼鸥 Catharacta maccormicki	KM401546	16 669
	海雀科 Alcidae		
19	扁嘴海雀 Synthliboramphus antiquus	AP009042	16 730

表 2 GenBank 中公布的鸻形目鸟类线粒体基因组 Table 2 Mitogenomes of the order Charadriiformes retrived from GenBank

形目鸟类线粒体基因组的平均碱基组成为: A 31.20%, C 30.60%, T 24.44%, G 13.76%。碱 基组成表现出显著 AT 偏移,范围从 54.39%(黑 嘴鸥)到 58.35% (针尾沙锥)。AT 和 GC 偏移

(AT and GC skews)可衡量碱基组成异质性, 在鸻形目鸟类线粒体基因组中,AT 偏移的平均 值为 0.12±0.02 (Mean±SD;下同),范围从 0.09 (白额燕鸥)到 0.15 (反嘴鹬);GC 偏移 的平均值为 - 0.38±0.01,范围从 - 0.40(水雉) 到 - 0.36 (白额燕鸥)。由此可见,线粒体基因 组的主编码链(H-strand)碱基中A和C的含量较高。

在13个蛋白编码基因中,有5种起始密码 子(ATG、GTG、ATT、ATC和ATA)、4个终 止密码子(TAA、TAG、AGG和AGA),以及 一个不完整的终止密码子(T--)。ATG和TAA 分别是最常见的起始和终止密码子。起始密码 子ATG出现在12个蛋白编码基因中(*ND*3除 外),8个基因仅使用ATG作为起始密码子。 终止密码子TAA出现在8个基因中,有6个基 讨论

3

因(COII、ATP6、ATP、ND3、ND4l和Cytb) 仅使用 TAA 作为终止密码子。碱基组成在各基 因中存在差异,GC 偏移在各基因中均为负值, 其中 ATP8 的值显著高于其他基因; AT 偏移在 4 个基因 (ND1、COI、ND3 和 ND4l) 中出 现负值,其他基因均为正值。基于 p-distanced 的成对遗传距离揭示各基因进化速率的异质 性,在COIII、COI和COII的进化速度很慢, 而 ND6、ND2 和 ATP8 的进化速度相对较快。 核苷酸多样性分布图表明,核苷酸变异较高的 基因有 ATP8、ND6、ND1 和 ND2, 变异较低 的基因有 COI、COII和 COIII(图 4)。由此 可见, COIII为最保守的蛋白编码基因, 而 ATP8 进化速度最快。在核苷酸水平,COI、COII 和 COIII进化速度最慢,可以作为物种辨别的 分子标记。

基于 PCR 扩增产物直接测序的方法可以 采用多种策略,大体可以归纳为长 PCR 的方法 和 PCR 引物步移法(孙毅等 2004, 刘念等 2006, 高瑞瑞等 2013)。其具体方法为参考 Sorenson 等提供的引物位置和序列,结合 GenBank 中相关鸟类的线粒体基因组序列,确 定所需的 PCR 扩增引物 (Sorenson et al. 1999, 柯杨等 2010)。长 PCR 技术能够扩增 5 kb 以 上的 DNA 片段, 其需要大分子 DNA 片段, 所 以要求样本来源于新鲜材料或保存条件较好的 材料;同时,扩增片段越长,反应的特异性越 低,长PCR对引物的要求更加严格。PCR 引物 步移法,目前,GenBank 中有较多的各类动物 的线粒体基因组,寻找能够覆盖线粒体全基因 组的保守引物相对容易实现(张乃心等 2013)。 此方法的缺点是许多类群缺乏通用引物信息, 使得扩增线粒体基因组部分片段变得困难,实 验耗费时间长。基因组中特殊的结构,如重复

Fig. 4 Sliding window analysis of the 13 protein coding genes in Charadriiformes

黑色实线: 各基因名称、相对位置和平均核苷酸变异。

The black line shows the value of nucleotide diversity (π) in a sliding window analysis of window size 300 bp with step size 10, and the value is inserted at its mid-point. Gene boundaries are indicated in the black box with a variation ratio per gene.

序列、高A+T含量和二级结构也会导致扩增的失败(杨婧等 2016)。目前使用较为广泛的 鸟类线粒体基因组测序技术是基于 PCR 扩增 产物的 Sanger 测序方法,即通过长 PCR 产物

结合引物步移法,是小规模线粒体基因组测序 的常用方法(柯杨等 2010,高瑞瑞等 2013, 沙淼等 2013)。

第二代测序(next-generation sequencing, NGS)技术的迅速发展为基因组测序带来了一 场巨大的变革,能够快速高效地获得大量序列, 为线粒体基因组测序提供了新的思路。目前基 于 NGS 技术已经对鸟类开展了大规模线粒体 基因组测序(Cooke et al. 2012, Lounsberry et al. 2015), 而基于新技术的鸻形目鸟类线粒体基因 组测序则刚刚起步。与 Sanger 测序技术相比, 虽然实验操作简单,只需提取总基因组,但也 有其固有的缺点,如:核基因组中存在线粒体 假基因,组装困难,测序覆盖度低,拼接过程 常产生缺口,测序成本高等(李雪娟等 2014, 杨婧等 2016)。目前的高通量测序技术对于小 规模线粒体基因组的研究费用较高,基于长 PCR 的高通量测序通常难以获得线粒体基因组 全序列等固有局限性,今后仍需结合 Sanger 测 序方法。

当前鸟类线粒体基因组的研究飞速发展, 并广泛应用于从目到科等各分类阶元的系统发 生研究。目前大多数鸻形目鸟类线粒体基因组 研究仅限于其基本特征的描述,并未成熟应用 于系统发生研究。鸻形目中还缺少一些关键类 群物种的测序结果,如三趾鹑科、石鸻科、彩 鹬科等类群还未有物种完成线粒体基因组测 序。线粒体基因组作为目前已知最小的基因组, 包含了一些基因组结构特征,提供了丰富全面 的"组学"信息;其测序工作经济高效,模板 要求低,在未来系统发生和物种演化研究方面 将持续发挥作用。大量鸻形目物种的线粒体全 基因组的发表促进了鸟类系统发生关系和物种 演化速率与模式的研究(Yoon et al. 2015, Hu et al. 2017)。线粒体基因在鸻形目鸟类系统发育 分析上应用广泛,但线粒体编码基因的分子适 应性研究却寥寥无几。鸻形目鸟类大多在春秋 季节有远距离迁徙的习性,长距离迁徙对动物 造成了严重的生理挑战,长期的进化使其具备 了完善的生理适应能力,但迁徙行为的适应性 机制仍不清楚。线粒体编码基因与细胞能量代 谢相关, 鸻形目鸟类大多具有长距离迁徙的习 性,期间必然涉及能量消耗、补给问题(Shen et al. 2010, Strohm et al. 2015),对线粒体基因组 的研究将促进鸟类能量代谢相关基因的进化研 究。

本研究通过比较鸻形目鸟类线粒体基因 组,研究发现其结构和组成相对保守,基因组 中存在多个大片段保守区,可以设计多对保守 引物。本研究在相对保守区域共设计13对扩增 通用引物,引物之间相互交叠,可以覆盖线粒 体全基因组。引物设计使用了简并碱基,扩增 产物长度均在 1.5 kb 左右,以保证扩增和测序 效果。该套引物已经在反嘴鹬科、鸻科和鹬科 等鸻形目物种中成功扩增,测序效果良好,可 以得到完整的线粒体基因组序列[相关结果已 经发表: GenBank No. 灰头麦鸡 KM404175 (Xie et al. 2016); 丘鹬 KM434134 (Yu et al. 2016); 白腰草鹬 KX668223 (Chen et al. 2016); 针尾沙锥 KY056596 (Hu et al. 2017)]。此外, 本研究设计的通用引物,退火温度均在 52 ℃ 左右,目的片段的扩增均可在相同的 PCR 扩增 程序下完成,极大地提高了线粒体基因组的扩 增效率、简化了扩增程序。希望该套引物可以 为后续鸻形目鸟类线粒体基因组测序和分析提 供便捷的研究方法。

参考文献

Baker A J, Pereira S L, Paton T A. 2007. Phylogenetic relationships and divergence times of Charadriiformes genera: multigene evidence for the Cretaceous origin of at least 14 clades of shorebirds. Biology Letters, 3(2): 205–209.

- Björklund M. 1994. Phylogenetic relationships among Charadriiformes: reanalysis of previous data. Auk, 111(4): 825–832.
- Boore J L. 1999. Animal mitochondrial genomes. Nucleic Acids Research, 27(8): 1767–1780.
- Boore J L. 2006. The use of genome-level characters for phylogenetic reconstruction. Trends in Ecology & Evolution, 21(8): 439–446.
- Cameron S L. 2014. Insect mitochondrial genomics: implications for evolution and phylogeny. Annual Review of Entomology, 59(1): 95–117.
- Chen W, Hu C, Chang Q. 2016. The complete mitochondrial genome of *Tringa ochropus* (Charadriiformes, Scolopacidae). Mitochondrial DNA Part B, 1(1): 841–842.
- Chu P C. 1995. Phylogenetic reanalysis of strauch's osteological data Set for the Charadriiformes. Condor, 97(1): 174–196.
- Cooke G M, King A G, Johnson R N, et al. 2012. Rapid characterization of mitochondrial genome rearrangements in Australian songbirds using next-generation sequencing technology. Journal of Heredity, 103(6): 882–886.
- da Fonseca R, Johnson W E, O'Brien S J, et al. 2008. The adaptive evolution of the mammalian mitochondrial genome. BMC Genomics, 9(1): 119.
- Ericson P G, Envall I, Irestedt M, et al. 2003. Inter-familial relationships of the shorebirds Aves: Charadriiformes. based on nuclear DNA sequence data. BMC Evolutionary Biology, 3(1): 149–154.
- Fain M G, Houde P. 2007. Multilocus perspectives on the monophyly and phylogeny of the order Charadriiformes Aves. BMC Evolutionary Biology, 7(1): 324.
- Friesen V L. 2015. Speciation in seabirds: why are there so many species and why aren't there more? Journal of Ornithology, 156(1): 1–13.
- Friesen M R, Beggs J R, Gaskett A C. 2017. Sensory-based conservation of seabirds: a review of management strategies and animal behaviours that facilitate success. Biological Reviews, 92(3): 1769–1784.
- Gibson R, Baker A. 2012. Multiple gene sequences resolve

phylogenetic relationships in the shorebird suborder Scolopaci Aves: Charadriiformes. Molecular Phylogenetics & Evolution, 64(1): 66–72.

- Hall T A. 1999. BioEdit: A user-friendly biological sequence alignment program for Windows 95/98/NT. Nucleic Acids Symposium, 41(1): 95–98.
- Hu C C, Zhang C L, Sun L, et al. 2017. The mitochondrial genome of pin-tailed snipe *Gallinago stenura*, and its implications for the phylogeny of Charadriiformes. PLoS ONE, 12(4): e0175244.
- Hu M, Gasser R B. 2006. Mitochondrial genomes of parasitic nematodes—progress and perspectives. Trends in Parasitology, 22(2): 78–84.
- Hughes A L. 2015. Coevolution of body form and reproductive effort in shorebirds (Aves: Charadriiformes). Evolutionary Biology, 42(3): 272–282.
- Koonin E V. 2010. The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biology, 11(5): 209.
- Lalitha S. 2004. Primer Premier 5. Biotech Software & Internet Report, 1(6): 270–272.
- Li H, Liu H, Song F, et al. 2012. Comparative mitogenomic analysis of damsel bugs representing three tribes in the family Nabidae Insecta: Hemiptera. PLoS ONE, 7(9): e45925.
- Li Q, Wei S J, Tang P, et al. 2016. Multiple lines of evidence from mitochondrial genomes resolve phylogenetic relationships of parasitic wasps in Braconidae. Genome Biology & Evolution, 8(9): 2651–2662.
- Livezey B C. 2010. Phylogenetics of modern shorebirds Charadriiformes based on phenotypic evidence: analysis and discussion. Zoological Journal of the Linnean Society, 160(3): 567–618.
- Lounsberry Z T, Brown S K, Collins P W, et al. 2015. Next-generation sequencing workflow for assembly of nonmodel mitogenomes exemplified with North Pacific albatrosses (*Phoebastria* spp.). Molecular Ecology Resources, 15(4): 893–902.
- Ma C, Yang P, Jiang F, et al. 2012. Mitochondrial genomes reveal the global phylogeography and dispersal routes of the migratory

locust. Molecular Ecology, 21(17): 4344-4358.

- Morin P A, Archer F I, Foote A D, et al. 2010. Complete mitochondrial genome phylogeographic analysis of killer whales (*Orcinus orca*) indicates multiple species. Genome Research, 20(7): 908–916.
- Paton T A, Baker A J, Groth J G, et al. 2003. RAG-1 sequences resolve phylogenetic relationships within Charadriiform birds. Molecular Phylogenetics & Evolution, 29(2): 268–278.
- Paton T A, Baker A J. 2006. Sequences from 14 mitochondrial genes provide a well-supported phylogeny of the Charadriiform birds congruent with the nuclear RAG-1 tree. Molecular Phylogenetics & Evolution, 39(3): 657–667.
- Pons J, Bauzàribot M M, Jaume D, et al. 2014. Next-generation sequencing, phylogenetic signal and comparative mitogenomic analyses in Metacrangonyctidae Amphipoda: Crustacea. BMC Genomics, 15(1): 566.
- Powell A, Barker F K, Lanyon S M. 2013. Empirical evaluation of partitioning schemes for phylogenetic analyses of mitogenomic data: An avian case study. Molecular Phylogenetics & Evolution, 66(1): 69–79.
- Rychlik W. 2007. OLIGO 7 primer analysis software. Methods in Molecular Biology, 402(1): 35.
- Sambrook J, Russell D W. 1989. Molecular Cloning: a Laboratory Manual. Vol. 3. New York: Cold Spring Harbor Laboratory Press.
- Shen Y Y, Liang L, Zhu Z H, et al. 2010. Adaptive evolution of energy metabolism genes and the origin of flight in bats. Proceedings of the National Academy of Sciences, 107(19): 8666–8671.
- Smith N A, Clarke J A. 2015. Systematics and evolution of the Pan-Alcidae Aves, Charadriiformes. Journal of Avian Biology, 46(2): 125–140.
- Sorenson M D, Ast J C, Dimcheff D E, et al. 1999. Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Molecular Phylogenetics & Evolution, 12(2): 105–114.
- Stein R W, Brown J W, Mooers A Ø. 2015. A molecular genetic time

scale demonstrates Cretaceous origins and multiple diversification rate shifts within the order Galliformes Aves. Molecular Phylogenetics & Evolution, 92: 155–164.

- Strohm J H, Gwiazdowski R A, Hanner R. 2015. Fast fish face fewer mitochondrial mutations: patterns of dN/dS across fish mitogenomes. Gene, 572(1): 27–34.
- Tamura K, Stecher G, Peterson D, et al. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology Evolution, 30(12): 2725–2729.
- Timmermans M J, Vogler A P. 2012. Phylogenetically informative rearrangements in mitochondrial genomes of Coleoptera, and monophyly of aquatic elateriform beetles Dryopoidea. Molecular Phylogenetics & Evolution, 63(2): 299–304.
- Wei S J, Shi M, Chen X X, et al. 2010. New views on strand asymmetry in insect mitochondrial genomes. PLoS ONE, 5(9): e12708.
- Xie W L, Hu C C, Yu T T, et al. 2016. The complete mitochondrial genome of *Vanellus cinereus* (Charadriiformes: Charadriidae). Mitochondrial DNA, 27(3): 1726–1727.
- Yoon K B, Cho C U, Park Y C. 2015. The mitochondrial genome of the Saunders's gull *Chroicocephalus saundersi* (Charadriiformes: Laridae) and a higher phylogeny of shorebirds Charadriiformes. Gene, 572(2): 227–236.
- Yu T T, Hu C C, Chang Q, et al. 2016. The complete mitochondrial genome of *Scolopax rusticola* (Charadriiformes: Scolopacidae). Mitochondrial DNA, 27(3): 1800–1801.
- Yuan M L, Zhang Q L, Guo Z L, et al. 2015. Comparative mitogenomic analysis of the superfamily Pentatomoidea (Insecta: Hemiptera: Heteroptera) and phylogenetic implications. BMC Genomics, 16(1): 1–16.
- Zelenkov N V, Volkova N V, Gorobets L V. 2016. Late Miocene buttonquails (Charadriiformes, Turnicidae) from the temperate zone of Eurasia. Journal of Ornithology, 157(1): 85–92.
- 高瑞瑞,黄原,雷富民. 2013. 中华攀雀线粒体基因组全序列测定 与分析. 动物学研究, 34(3): 228-237.
- 柯杨,黄原,雷富民. 2010. 黑尾地鸦线粒体基因组序列测定与分 析.遗传,32(9):951-960.

- 李雪娟,黄原,雷富民. 2014. 山鹧鸪属鸟类线粒体基因组的比较 及系统发育研究. 遗传, 36(9): 912-920.
- 刘念, 胡婧, 黄原. 2006. 应用长 PCR 扩增蝗虫线粒体全基因组. 动物学杂志, 41(2): 61-65.
- 沙森,林立亮,李雪娟,等. 2013. 线粒体基因组测序策略和方法. 应用昆虫学报,50(1):293-297.
- 孙毅,马飞,肖冰,等. 2004. 鸮形目两种鸟类线粒体基因组全序 列测定与比较研究. 中国科学: 生命科学, 34(6): 527-536.
- 杨婧,黄原. 2016. 线粒体基因组的高通量测序策略. 生命科学, 28(1): 112-117.
- 张乃心, 张玉娟, 余果, 等. 2013. 双翅目昆虫线粒体基因组结构 特点及其测序通用引物的设计和应用. 昆虫学报, 56(4): 398-407.
- 张新宇, 高燕宁. 2004. PCR 引物设计及软件使用技巧. 生物信息 学, 2(4): 15-18.