中国大鲵非损害性DNA取样及提取方法的比较研究
作者:
作者单位:

1.吉首大学大鲵资源保护与综合利用湖南省工程实验室 &2.林产化工工程湖南省重点实验室 吉首大学生物资源与环境科学学院;3.吉首大学大鲵资源保护与综合利用湖南省工程实验室&4.① 吉首大学大鲵资源保护与综合利用湖南省工程实验室 林产化工工程湖南省重点实验室 张家界;5.② 吉首大学生物资源与环境科学学院 吉首;6.湖南省水产科学研究所 长沙

基金项目:

国家自然科学基金项目(No. 32060128,32060238),湖南省创新平台与人才计划项目(2020RC3057),质兰基金会项目(No. 2020040371B),吉首大学生态学双一流学科建设经费及研究生校级课题(No. Jdy20086,DNGC2012,DNGC2021)


Comparative Study on the Methods of Non-Disruptive DNA Sampling and Extraction in Chinese Giant Salamander (Andrias davidianus)
Author:
Affiliation:

Hunan Engineering Laboratory for Chinese Giant Salamander’s Resource Protection and Comprehensive Utilization, and Key Laboratory of Hunan Forest Products and Chemical Industry Engineering,College of Biology and Environmental Sciences, Jishou University,

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    基于DNA分子的研究方法在物种分类及系统学、生态遗传学、保护生物学等领域被广泛运用,但针对动物DNA取样方法的比较研究整体上较为缺乏。动物DNA取样要在对实验对象造成最小化影响和获得满足研究需要的DNA之间保持平衡,这需要不断探索取样方法的优缺点和适用性。本研究以人工繁育的水生有尾两栖动物中国大鲵(Andrias davidianus)为研究对象,比较口腔拭子、皮肤拭子、皮肤脱落物和尾静脉采血4种取样方式对DNA质量的影响。另外,基于其中皮肤拭子样品,进一步比较试剂盒法、高盐法、苯酚氯仿法和磁珠法对DNA提取效果的影响。结果表明,4种非损害性取样方法均能获取目标物种的DNA,且均未对取样对象的行为或适合度产生明显影响,但在DNA质量和浓度方面存在一定差异,其中,相对最好的为尾静脉采血,其次是口腔拭子和皮肤拭子,最差的为皮肤脱落物样品。而基于皮肤拭子样品采用4种不同DNA提取方法所获得的DNA效果整体差异不大。本研究通过以中国大鲵作为水生和非皮毛类动物的代表类群,研究并总结了不同DNA取样方法和提取方式的优缺点及注意事项,可为未来中国大鲵或其他珍稀濒危动物的非损害性取样方法及相关分子生态学研究提供借鉴。

    Abstract:

    [Objectives] DNA-based research methods have been widely applied in the study of species taxonomy and phylogeny, ecological genetics, and conservation biology, however, the comparative studies on DNA samplings are generally scarce. In this study, we aimed to compare the performance and applicability of different DNA sampling and extraction methods by using the captive-bred Chinese giant salamander (Andrias davidianus) as study objects. [Methods] DNA samples were obtained by four sampling methods including buccal swabbing, skin swabbing, shed skin sampling and tail venous blood sampling (Fig. 2). DNA was extracted by four different methods including Kit method, high salt method, phenol-chloroform method and magnetic bead method based on the most accessible skin swabbing samples. All the DNA qualities and concentrations were detected by gel electrophoresis and nucleic acid protein analyzer, and each of the sampling DNA was identified by PCR and sequencing of the mitochondrial COI fragments. In addition, the daily and feeding behaviors of the experimental animals were observed after samplings. [Results] Our results showed that the daily and feeding behaviors of A. davidianus didn’t change visibly, thus the four sampling methods could belong to the category of non-disruptive DNA sampling that has minimal impact on the fitness, behavior or welfare of the experimental animals. Among the four different sampling methods, the tail venous blood sampling performs optimally, followed by buccal, skin swabbing, and then shed skin sampling in terms of DNA quality and concentration (Fig. 3a, b). However, the DNA obtained by four different extraction methods based on skin swabbing samples were generally similar (Fig. 3c, d). Although different sampling methods performed differences in obtaining DNA, all the extracted DNA could be amplified of the target COI gene fragments (Fig. 3e, f). [Conclusion] By summarizing the advantages, disadvantages and precautions of different DNA sampling and extraction methods (Table 1), we suggest that the most appropriate sampling method should be selected according to the experimental purposes and specific conditions. In terms of extraction methods, however, considering the toxicity of reagents, the complexity of operation, time and economic costs, the kit method is what we recommended. This study could provide some guidance for non-disruptive sampling and relevant molecular ecology studies of A. davidianus and other rare and endangered animals in the future.

    参考文献
    Baillon L, Pierron F, Oses J, et al. 2016. Detecting the exposure to Cd and PCBs by means of a non-invasive transcriptomic approach in laboratory and wild contaminated European eels (Anguilla Anguilla). Environmental Science and Pollution Research, 23(6): 5431–5441. Balázs G, V?r?s J, Lewarne B, et al. 2020. A new non invasive in situ underwater DNA sampling method for estimating genetic diversity. Evolutionary Ecology, 34(4): 633–644. Brzeziński M, Romanowski J. 2006. Experiments on sprainting activity of otters (Lutra lutra) in the Bieszczady Mountains, southeastern Poland. Mammalia, 70(1/2): 58–63. Che J, Chen H M, Yang J X, et al. 2012. Universal COI primers for DNA barcoding amphibians. Molecular Ecology Resources, 12(2): 247–258. Cohen O, Barocas A, Geffen E. 2013. Conflicting management policies for the Arabian wolf Canis lupus arabs in the Negev Desert: is this justified? Oryx, 47(2): 228–236. Gallardo C E, Correa C, Morales P, et al. 2012. Validation of a cheap and simple nondestructive method for obtaining AFLPs and DNA sequences (mitochondrial and nuclear) in amphibians. Molecular Ecology Resources, 12(6): 1090–1096. Janse M, Kappe A L, van Kuijk B L M. 2013. Paternity testing using the poisonous sting in captive white spotted eagle rays Aetobatus narinari: a non-invasive tool for captive sustainability programmes. Journal of Fish Biology, 82(3): 1082–1085. Lawrence M J, Raby G D, Teffer A K. 2020. Best practices for non-lethal blood sampling of fish via the caudal vasculature. Journal of Fish Biology, 97(1): 4–15. Lefort M C, Cruickshank R H, Descovich K, et al. 2022. Blood, sweat and tears: a review of non-invasive DNA sampling. Peer Community Journal, 2(16): 2804–3871. Liang G, Geng B R, Zhao E M. 2004. Andrias davidianus. The IUCN Red List of Threatened Species. [DB/OL]. [2022-03-02]. https:// dx.doi.org/10.2305/IUCN.UK.2004.RLTS.T1272A3375181.en. Liang Z Q, Chen W T, Wang D Q, et al. 2019. Phylogeographic patterns and conservation implications of the endangered Chinese giant salamander. Ecology and Evolution, 9(7): 3879–3890. Maddock S T, Lewis C J, Wilkinson M, et al. 2014. Non-lethal DNA sampling for caecilian amphibians. The Herpetological Journal, 24(4): 255–260. Mendoza A M, García-Ramírez J C, Cardenas-Henao H. 2012. Blood puncture as a nondestructive sampling tool to obtain DNA in frogs: comparison of protocols and survival analysis. Molecular Ecology Resources, 12(3): 470–475. Miller H C. 2006. Cloacal and buccal swabs are a reliable source of DNA for microsatellite genotyping of reptiles. Conservation Genetics, 7(6): 1001–1003. Müller A S, Lenhardt P P, Theissinger K. 2013. Pros and cons of external swabbing of amphibians for genetic analyses. European Journal of Wildlife Research, 59(4): 609–612. Murphy R W, Fu J Z, Upton D E, et al. 2000. Genetic variability among endangered Chinese giant salamanders, Andrias davidianus. Molecular Ecology, 9(10): 1539–1547. O'Toole M T. 2005. Miller-Keane Encyclopedia and Dictionary of Medicine, Nursing, and Allied Health. 7th ed. Philadelphia: Saunders. Pidancier N, Miquel C, Miaud C. 2003. Buccal swabs as a non-destructive tissue sampling method for DNA analysis in amphibians. The Herpetological Journal, 13(4): 175–178. Prunier J, Kaufmann B, Grolet O, et al. 2012. Skin swabbing as a new efficient DNA sampling technique in amphibians, and 14 new microsatellite markers in the alpine newt (Ichthyosaura alpestris). Molecular Ecology Resources, 12(3): 524–531. Ringler E. 2018. Testing skin swabbing for DNA sampling in dendrobatid frogs. Amphibia-Reptilia, 39(2): 245–251. Taberlet P, Waits L P, Luikart G. 1999. Noninvasive genetic sampling: look before you leap. Trends in Ecology & Evolution, 14(8): 323–327. Waits L P, Paetkau D. 2005. Noninvasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection. The Journal of Wildlife Management, 69(4): 1419–1433. Xu Y, Guan T, Liu J, et al. 2020. An efficient and safe method for the extraction of total DNA from shed frog skin. Conservation Genetics Resources, 12(2): 225–229. Yan F, Lü J C, Zhang B L, et al. 2018. The Chinese giant salamander exemplifies the hidden extinction of cryptic species. Current Biology, 28(10): R590–R592. Zemanova M A. 2019. Poor implementation of non-invasive sampling in wildlife genetics studies. Rethinking Ecology, 4: 119–132. Zemanova M A. 2021. Noninvasive genetic assessment is an effective wildlife research tool when compared with other approaches. Genes, 12(11): 1672. 艾永斌, 杨旭升, 彭卫华, 等. 2018. 体表擦拭取样在两栖动物保护遗传学研究中的应用. 四川动物, 37(4): 373–380. 蒋万胜, 兰香英, 王金秀, 等. 2022. 中国大鲵种质资源保护与利用研究进展. 水产学报, 46(4): 683–705. 李军林, 舒青, 蒙世杰, 等. 2001. 非损伤性取样在朱鹮种群遗传研究中的应用. 遗传, 23(3): 217–219. 李明, 魏辅文, 饶刚, 等. 2001. 非损伤性取样法在保护遗传学研究中的应用. 动物学报, 47(3): 338–342. 鲁云风, 文祯中, 原国辉, 等. 2004. 3种血液抗凝剂的抗凝效果及对RAPD反应影响的研究. 南阳师范学院学报: 自然科学版, 3(12): 55–57. 王李玲, 胡靖扬, 匡卫民, 等. 2021. 非损伤性取样样品中富集宿主DNA的研究进展. 兽类学报, 41(3): 284–295. 王琰, 钱晨, 丁晶晶, 等. 2014. 季节和天气因素对麋鹿非损伤性遗传取样的影响. 南京师大学报: 自然科学版, 37(1): 123–127. 武芳婷, 吴弘, 赵大鹏. 2022. 东方白鹳粪便总DNA种取法比五种提取方法的比较. 动物学杂志, 57(2): 300–309. 杨丽萍, 蒙子宁, 刘晓春, 等. 2011. 中国大鲵5个野生种群的AFLP分析. 中山大学学报: 自然科学版, 50(2): 99–104. 周江, 王思维, 肖宁, 等. 2021. 中国大鲵复合体谱系多样性及贵州分布中国大鲵的分类评估. 贵州师范大学学报: 自然科学版, 39(2): 1–14.
    相似文献
    引证文献
引用本文

王金秀,兰香英,罗庆华,邓克国,梁志强,蒋万胜.2022.中国大鲵非损害性DNA取样及提取方法的比较研究.动物学杂志,57(5):641-652.

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-04-06
  • 最后修改日期:2022-09-01
  • 录用日期:2022-08-26
  • 在线发布日期: 2022-10-22
  • 出版日期: 2022-10-20