苏州城区河道后生浮游动物群落结构 与环境因子的关系
作者:
基金项目:

“十三五”水专项-苏州区域水质提升与水生态安全保障技术及综合示范项目(No. 2017ZX07205)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    2018年1月至11月对苏州城区8个片区23个监测点的河道断面进行每两月一次的后生浮游动物(轮虫、枝角类、桡足类)定量采集和分析,共鉴定出后生浮游动物127种,其中,轮虫48种,枝角类41种,桡足类38种。苏州城区河道后生浮游动物的年度优势种共24种,优势种生态位宽度变化范围在0.25 ~ 0.84之间,不同片区之间的生境异质性导致优势种生态位重叠指数差异较大。各片区的年均后生浮游动物总密度为(315.2 ± 161.4)ind/L,年均后生浮游动物总生物量为(0.77 ± 0.27)mg/L。不同片区间的生境异质性导致后生浮游动物现存量存在差异,轮虫在各片区的密度占比均达85.3%以上,成为绝对优势类群。典范对应分析(CCA)表明,电导率、水温、溶解氧、透明度、叶绿素a、总氮和总磷是影响后生浮游动物群落结构的重要环境因子。

    Abstract:

    In order to explore the relationship between metazooplankton (Rotifers, Cladocera and Copepod) community structure and water environmental factors in Suzhou urban river, bimonthly quantitative collection and analysis of metazooplankton were carried out at 23 monitoring points in 8 urban areas of Suzhou City from January to November 2018 (Fig. 1), and the water environmental factors were determined. Metazooplankton were collected according to the national standard method and identified under microscope. A total of 127 species of zooplankton were identified, including 48 species of Rotifers, 41 species of Cladocera and 38 species of Copepod. The number of species in Shantang area was the highest, with 81 species, while in Western of the city the number was the lowest, with 49 species (Fig. 2). The water environmental factors were determined according to the national standards (Table 1), and it was found that there were some differences among different regions (P < 0.05). Using the formula to calculate the dominance (Y) of metazooplankton in Suzhou urban river, 24 species of annual dominant species (Y ≥ 0.02) were identified (Table 2). Using the formula to calculate the niche breadth (Bi) and niche overlap (Qik) of dominant species, it was found that the niche breadth was 0.25﹣0.84 (Table 2). According to this, the dominant species of metazooplankton in Suzhou urban river were divided into three niche groups, and the habitat heterogeneity between different areas led to a large difference in niche overlap (Fig. 3). The average annual total density of metazooplankton in each area was 124.1﹣626.4 ind/L (Fig. 4), with the highest in Western of the city and the lowest in Ganjiang area. Rotifers account for more than 85.3% of the total metazooplankton density in each area, making them an absolute dominant group. The annual total biomass of metazooplankton in each area was 0.49﹣1.12 mg/L (Fig. 5), with the highest in Western of the city and the lowest in Southern of the ancient city. The variation law of metazooplankton biomass in each area is not completely consistent with the change of density. Different habitats in different regions lead to differences in the current stock of metazooplankton. The metazooplankton community composition and environmental factors were subjected to detrended correspondence analysis (DCA), because the maximum gradient was more than 3, so the final selection canonical correspondence analysis (CCA) was selected for the constrained sequencing. Canonical correspondence analysis shows that electrical conductivity, water temperature, dissolved oxygen, transparency, chlorophyll a, total nitrogen and total phosphorus are important environmental factors affecting the metazooplankton community structure in Suzhou urban river.

    参考文献
    Holste L, Peck M A. 2006. The effects of temperature and salinity on egg production and hatching success of Baltic Acartia tonsa (Copepoda: Calanoida): a laboratory investigation. Marine Biology, 148(5): 1061–1070. Marques S C, Azeiteiro U M, Marques J C, et al. 2006. Zooplankton and Ichthyoplankton communities in a tmperate etuary: spatial and temporal patterns. Journal of Plankton Research, 28(3): 297–312. Massicotte P, Frenette J J, Proulx R, et al. 2014. Riverscape heterogeneity explains spatial variation in zooplankton functional evenness and biomass in a large river ecosystem. Landscape Ecology, 29(1): 67–79. Pandit S N, Kolasa J, Cottenie K. 2009. Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology, 90(8): 2253–2262. Sarma S S S, Nandini S, Gulati R D. 2005. Life history strategies of Cladocerans: comparisons of tropical and temperate taxa. Hydrobiologia, 542(1): 315–333. Zhang J, Xie P, Tao M, et al. 2013. The impact of fish predation and Cyanobacteria on zooplankton size structure in 96 Subtropical Lakes. PLoS One, 8(10): e76378. 陈光荣, 雷泽湘, 谭镇, 等. 2010. 环境因子对广东城市湖泊后生浮游动物的影响. 水生态学杂志, 31(4): 28–32. 陈磊, 高东泉, 舒凤月, 等. 2016. 南四湖浮游动物群落结构特征及其与环境因子的关系. 动物学杂志, 51(1): 113–120. 杜彩丽, 杨丽, 赵诣, 等. 2019. 淀山湖浮游动物群落时空分布特征及其与环境因子的关系. 环境科学, 40(10): 4513–4522. 杜明敏, 刘镇盛, 王春生, 等. 2013. 中国近海浮游动物群落结构及季节变化. 生态学报, 33(17): 5407–5418. 范可章, 杨家新, 王荣, 等. 2012. 阜阳城区水体浮游动物群落周年结构特征及其与水质的关系. 城市环境与城市生态, 25(5): 16–21. 付江波, 赵文信, 胡红勇, 等. 2019. 苏州市古城区河道水质时空变化分析与评价. 水利科技与经济, 25(2): 22–27. 付显婷, 杨薇, 赵彦伟, 等. 2020. 白洋淀浮游动物群落结构与水环境因子的关系. 农业环境科学学报, 39(6): 1271–1282. 高原, 王超, 刘乾甫, 等. 2019. 珠三角河网不同水文期浮游动物优势种及生态位. 水生态学杂志, 40(6): 37–44. 郭欧阳. 2018. 长江下游干流浮游动物群落结构及其与环境因子相关性的研究. 上海: 上海师范大学硕士学位论文. 国家环境保护总局. 2002. 水和废水监测分析方法. 4版. 北京: 中国环境科学出版社, 88–285. 胡艺, 李秋华, 何应, 等. 2020. 贵州高原水库浮游动物分布特征及影响因子——以阿哈水库为例. 中国环境科学, 40(1): 227–236. 姜作发, 唐富江, 董崇智, 等. 2006. 黑龙江水系主要江河浮游动物种群结构特征. 东北林业大学学报, 34(4): 64–66. 蒋嫣红, 程婧蕾, 王丽卿. 2012. 公园水体浮游植物与环境因子的关系. 生态学杂志, 31(3): 606–613. 焦海峰, 施慧雄, 尤仲杰, 等. 2011. 渔山岛岩礁基质潮间带大型底栖动物优势种生态位. 生态学报, 31(14): 3928–3936. 林志, 万阳, 徐梅, 等. 2018. 淮南迪沟采煤沉陷区湖泊后生浮游动物群落结构及其影响因子. 湖泊科学, 30(1): 171–182. 马婕, 申利亚, 何培民, 等. 2021. 苏州城区河道浮游植物功能群演替特征及其对环境因子的响应. 上海海洋大学学报, 30(1): 103–112. 潘超, 刘林峰, 高健, 等. 2018. 神农架大九湖后生浮游动物群落结构和水质评价. 长江流域资源与环境, 27(3): 564–573. 邱小琮, 赵红雪, 孙晓雪. 2012. 沙湖浮游动物与水环境因子关系的多元分析. 生态学杂志, 31(4): 896–901. 王凤娟. 2007. 巢湖东半湖浮游生物与水质状况及营养类型评价.合肥: 安徽农业大学硕士学位论文. 王凤娟, 胡子全, 汤洁, 等. 2006. 用浮游动物评价巢湖东湖区的水质和营养类型. 生态科学, 25(6): 550–553. 王硕, 杨涛, 李小平, 等. 2019. 渭河流域浮游动物群落结构及其水质评价. 水生生物学报, 43(6): 1333–1345. 王松, 陈红, 刘清, 等. 2018. 汉城湖浮游动物群落结构特征及与水质关系. 生态科学, 37(2): 114–123. 王振方, 张玮, 杨丽, 等. 2019. 异龙湖不同湖区浮游植物群落特征及其与环境因子的关系. 环境科学, 40(5): 2249–2257. 魏攀龙, 潘杨, 戴天杰, 等. 2019. 采用水体表观污染指数法评价苏州城市水体表观质量. 环境工程, 37(4): 12–16. 吴蓓, 汪翙, 黄玮, 等. 2007. 苏州城区不同功能区地表径流污染特征. 水资源保护, 23(2): 57–59, 63. 吴利, 冯伟松, 张堂林, 等. 2011. 湖北省西凉湖浮游动物群落周年动态变化及其与环境因子的关系. 湖泊科学, 23(4): 619–625. 杨亮杰, 吕光汉, 竺俊全, 等. 2014. 横山水库浮游动物群落结构特征及水质评价. 水生生物学报, 38(4): 720–728. 尹丽平, 夏昇, 顾静, 等. 2018. 上海青草沙水库浮游甲壳类群落结构的特征. 上海海洋大学学报, 27(6): 864–874. 袁雅琴, 周春丽, 高海燕, 等. 2017. 太湖典型入湖河流莲花荡浮游动物群落的季节演替及其环境指示意义初步研究. 动物学杂志, 52(5): 812–823. 张立. 2015. 城市缓流水体表观质量评价与分类研究. 苏州: 苏州科技学院硕士学位论文. 周莹. 2016. 水生生物对水体溶解氧日变化规律影响. 沈阳: 沈阳师范大学硕士学位论文.
    引证文献
    引证文献 [1]
引用本文

刘同琳,陈皓若,洪陈聪,张健,马婕,陈立婧.2021.苏州城区河道后生浮游动物群落结构 与环境因子的关系.动物学杂志,56(5):674-685.

复制
文章指标
  • 点击次数:542
  • 下载次数: 1239
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2020-11-17
  • 最后修改日期:2021-08-18
  • 录用日期:2021-08-17
  • 在线发布日期: 2021-10-09
  • 出版日期: 2021-10-20