融入注意力机制的东北虎和东北豹图像识别算法研究
作者:
作者单位:

1 长春师范大学地理科学学院 长春 130032;2 吉林高分遥感应用研究院有限公司 长春 130021;3 吉林省林业勘察设计研究院 长春 130022;4 东北虎豹国家公园管理局 长春 130000

作者简介:

李雪冬,男,讲师;研究方向:智能影像识别;E-mail: lixuedong@ccsfu.edu.cn。

通讯作者:

中图分类号:

Q958

基金项目:

吉林省科技发展计划项目(No. YDZJ202301ZYTS221),长春师范大学自然科学基金项目(长师大自科合字〔2019〕第 08 号);


An Image Recognition Algorithm Integrated With Attention Mechanism for Amur Tiger and Amur Leopard
Author:
Affiliation:

1 School of Geographic Sciences, Changchun Normal University, Changchun 130032; 2 Jilin Institute of GF Remote Sensing Application, Changchun 130021; 3 Jilin Forestry Survey and Design Research Institute, Changchun 130022; 4 Northeast China Tiger and Leopard National Park Administration, Changchun 130000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决自动感应红外相机在野外环境监测中遇到树木遮挡、背景干扰、夜间识别困难等问题, 本研究通过构建融入注意力机制的深度学习模型作为目标识别的基础框架,实现更高效、更精准的野 生动物识别方法。本研究选取东北虎豹国家公园内的东北虎(Panthera tigris altaica)、东北豹(P. pardus orientalis)、野猪(Sus scrofa)、梅花鹿(Cervus nippon)和狍子(Capreolus pygargus)五物种作为研究 对象,提出融入注意力机制模块并实现局部跨通道交流的卷积神经网络模型,以实现降低复杂背景环 境对目标识别的影响,完成区分昼夜、不同角度及不同场景下的动物精准识别。结果表明:本数据集 下 YOLO_v5m 算法平均精度均值为 86.67%,引入迁移算法后平均精度均值为 91.16%,提高了 4.49%, 有较好的识别效果,且训练时长缩短了 106 min;在迁移算法的基础上融入 CA、CBAM、SE 和 ECA 四类注意力机制后,CA 注意力具有良好的性能,平均精度为 93.72%,相比另外三种注意力机制分别 提高了 1.85%、1.78%、1.05%。此外,融入注意力机制的深度学习模型还具有精度高、稳定性强等优 势,更适用于复杂背景下的东北虎与东北豹识别。

    Abstract:

    [Objectives] The Amur Tiger and Amur Leopard are endangered protected animals, and using efficient means to identify and monitor them is of great significance for the conservation of species diversity.In order to solve the problems of tree occlusion, background interference, and difficulty in nighttime identification encountered in infrared camera monitoring in the wild, this study builds a deep learning model incorporating attention mechanism as a basic framework for target recognition, providing an efficient and accurate method for wildlife identification. [Methods] This study captured video images of wild animals by deploying automatic infrared cameras in the Northeast China Tiger and Leopard National Park. Eight hundred videos were selected for keyframe extraction. After noise removal, image enhancement, and image calibration, a dataset composed of 11 020 images was constructed for five species: Amur Tiger, Amur Leopard, Wild Boar, Sika Deer, and Roe Deer. This study proposed a convolutional neural network model integrating an attention mechanism module and realizing local cross-channel communication to reduce the impact of complex background environments on target recognition. This model achieved precise identification of animals in different scenarios, including day and night, different angles, and different scenes. The recognition performance of the model was evaluated via metrics such as average precision, recall, accuracy, and F1 score. [Results] The mean average precision value of the YOLO_v5m algorithm was 86.67%. After introduction of transfer learning, the mean average precision value was increased to 91.16%, and the time consumption was shortened by 106 min. Among the four types of attention mechanisms: CA, CBAM, SE, and ECA, the CA attention mechanism exhibited the best performance, achieving the average accuracy of 93.72%, which was 1.85%, 1.78%, and 1.05% higher than the other attention mechanisms, respectively (Fig. 5). [Conclusion] The deep learning model proposed in this study, which integrates transfer learning and attention mechanism, has the advantages of high accuracy and strong robustness, balancing training speed and recognition accuracy. By deploying infrared cameras to capture images of wild animals, this study can better test the potential of the model under the real living conditions of wild animals. The improved model in this study is more suitable for the identification of Amur Tigers and Amur Leopards in complex backgrounds.

    参考文献
    相似文献
    引证文献
引用本文

李雪冬,韩姝,杨拂晓,费龙,闫泰辰. 2025.融入注意力机制的东北虎和东北豹图像识别算法研究. 动物学杂志, 60(6): 814-824.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-06
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-12-20
  • 出版日期:
文章二维码