基于卷积神经网络的普氏野马个体识别
CSTR:
作者:
作者单位:

1.中国科学院动物研究所动物进化与系统学院重点实验室 北京 100101;2.新疆卡拉麦里山有蹄类野生动物自然保护区管理中心 昌吉 831100

作者简介:

刘泽宇,男,硕士研究生;研究方向:深度学习与动物学;E-mail:liuzeyu2023@ioz.ac.cn。

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(No. 32470474),中国科学院动物研究所自主部署项目(2023IOZ0104,2024IOZ0108);


Individual Identification of Equus ferus przewalskii Based on Convolutional Neural Network
Author:
Affiliation:

1.Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101; 2.Xinjiang Kalamaili Mountain Ungulate Nature Reserve Management Center, Changji 831100, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    普氏野马(Equus ferus przewalskii)被重引入卡拉麦里国家公园已逾20年。普氏野马个体的准确识别成为监测其群体变化及空间行为研究的关键技术。为此,本研究以卡拉麦里国家公园20匹普氏野马的31 477张图像为研究对象,基于卷积神经网络构建普氏野马的个体识别体系。该体系首先通过YOLOv8神经网络自动检测和分割普氏野马头部图像作为感兴趣区域(ROI),以构建ROI数据集,然后使用EfficientNetV2模型对该数据集进行特征提取和识别。为了验证个体识别模型的性能,将EfficientNetV2模型与相同数据集下训练的VGG19模型和YOLOv8模型进行比较,识别准确率分别为96.44%、89.51%和89.33%。结果表明,EfficientNetV2模型的识别准确率最高,具有较好的个体识别性能。使用卷积神经网络可以快速且准确地获取普氏野马的个体信息,为濒危物种保护及种群动态监测提供技术支持。

    Abstract:

    [Objectives] The Przewalski’s Horse Equus ferus przewalskii is a nationally protected species in China. The reintroduction projects in the Kalamaili National Park have become a successful example of restoring endangered species. Precise individual identification of Przewalski’s horses is crucial for the appropriate design of conservation and management strategies. Advances in computer vision provide an opportunity for the development of individual identification, with a high degree of accuracy in characteristic recognition. [Methods] In this study, we collected 31 477 images of 20 Przewalski’s Horses in the Kalamaili National Park and used convolutional neural network of deep learning to develop a new individual identification model (Fig. 2). We employed the YOLOv8 model to detect the head images of Przewalski’s Horses and segmented the head images as regions of interest (ROIs). We then used EfficientNetV2 to extract image features from the ROI dataset and identify the individuals (Fig. 3). Furthermore, we used VGG19 and YOLOv8 to extract image features and calculate the identification accuracy, precision, recall, F1 score, and confusion matrix (Figs. 4, 5). [Results] To validate the model performance, we compared the EfficientNetV2 model with VGG19 and YOLOv8 under the same conditions. The EfficientNetV2 model achieves the accuracy of 96.44%, precision of 94.81%, and recall of 94.57%. The VGG19 model has the accuracy of 89.51%, precision of 90.96%, and recall of 89.51%. YOLOv8 reaches the accuracy of 89.33%, precision of 83.90%, and recall of 83.52% (Table 1). The results indicate that the EfficientNetV2 model has the highest accuracy, demonstrating excellent individual identification performance. [Conclusion] This study focused on 20 Przewalski’s Horses in the Kalamaili National Park and developed an individual identification model for Przewalski’s Horses. Our model can be applied in future studies of Przewalski’s Horses, such as accurate individual identification, long-term monitoring, and behavior analysis.

    参考文献
    相似文献
    引证文献
引用本文

刘泽宇,刘宏广,李基才,张赫凡,沙丽塔娜提.木巴拉克,侯仲娥. 2025.基于卷积神经网络的普氏野马个体识别. 动物学杂志, 60(5): 641-650.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-27
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-10-21
  • 出版日期:
文章二维码