基于高通量测序的三种裂腹鱼微卫星引物筛选及其在遗传多样性分析中的应用
作者:
作者单位:

1.甘肃省水产研究所/甘肃省冷水性鱼类种质资源与遗传育种重点实验室 兰州 730030;2.甘肃省水产研究所/甘肃省黄河上游渔业资源环境野外科学观测研究站 临夏 731100

作者简介:

杜岩岩,女,正高级工程师;研究方向:鱼类资源保护;E-mail:273639273@qq.com。

通讯作者:

中图分类号:

基金项目:

甘肃省自然科学基金项目(No. 23JRRA1334),甘肃省创新基地和人才计划项目(No. 21JR7RA720),农业农村部财政专项项目(No. HHDC202302);


Microsatellite Loci Isolation for Three Schizothoracine Species and Their Applications on Analysis of Genetic Polymorphism
Author:
Affiliation:

1.Gansu Key Laboratory of Cold Water Fishes Germplasm Resources and Genetics Breeding, Gansu Fisheries Research Institute, Lanzhou 730030; 2.Gansu Fishery Resources and Environment in the Upper Reaches of the Yellow River Observation andResearch Station, Gansu Fisheries Research Institute, Linxia 731100, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解祁连裸鲤(Gymnocypris chilianensis)、黄河裸裂尻鱼(Schizopygopsis pylzovi)和嘉陵裸裂尻鱼(S. kialingensis)3种高原裂腹鱼类不同群体间遗传分化程度和遗传多样性,采用高通量测序技术对3种裂腹鱼基因组进行随机测序,筛选出微卫星位点设计引物,通过毛细管荧光电泳分型筛选出21对多态性较高的3个物种通用引物。利用21对通用引物对16个群体309尾个体的基因组DNA进行扩增,其中,祁连裸鲤5个群体110尾个体,黄河裸裂尻鱼6个群体72尾个体,嘉陵裸裂尻鱼5个群体127尾个体。祁连裸鲤黄羊群体遗传多样性最高(等位基因数Na为1.442,有效等位基因数Ne为1.314,香浓指数I为0.203,Nei’s基因多样性指数h为0.203,多态位点百分率P为44.24%),张掖群体最低(Na 1.042,Ne 1.042,I 0.029,h 0.021,P 4.24%);黄河裸裂尻鱼祁连群体遗传多样性最高(Na 1.539,Ne 1.193,I 0.206,h 0.127,P 53.94%),石门群体最低(Na 1.236,Ne 1.126,I 0.120,h 0.078,P 23.64%);嘉陵裸裂尻鱼石门群体遗传多样性最高(Na 1.351,Ne 1.152,I 0.147,h 0.094,P 35.15%),舟曲群体最低(Na 1.181,Ne 1.089,I 0.088,h 0.057,P 18.18%)。总体来看,黄河裸裂尻鱼的遗传多样性高于祁连裸鲤和嘉陵裸裂尻鱼。不同种内各群体间遗传参数差异相对较小,表明各群体间遗传多样性水平相近。贝叶斯基因型聚类分析显示,黄河裸裂尻鱼(黄羊群体)和祁连裸鲤(黄羊群体)之间、黄河裸裂尻鱼(石门群体)和嘉陵裸裂尻鱼(石门群体)之间存在种间基因渐渗现象。研究筛选出的微卫星位点多态性较高,对3种裂腹鱼16个群体的遗传多样性进行评价,可以有效评估其种质资源状况,为裂腹鱼类资源保护提供遗传数据依据。

    Abstract:

    [Objectives] To investigate the genetic diversity and differentiation among populations of Gymnocypris chilianensis, Schizopygopsis pylzovi,and S. kialingensis distributedin Gansu Province, microsatellite markers were screened and used to assess the conservation genetics of these three species. [Methods]From 2017 to 2022, 309 ind from 16 populations of the three fish species were collected from the Weihe, Taohe, and Daxia Rivers (Yellow River basin); the Bailongjiang River (Jialing River in the Yangtze Valley); and the Shule, Heihe, and Shiyang Rivers (inland river systems). These included 110 ind from 5 populations of G. chilianensis, 72 ind from 6 populations of S. pylzovi, and 127 ind from 5 populations of S. kialingensis. High-throughput sequencing was conducted to identify microsatellite markers in the three species. Polymorphism at microsatellite loci was assessed using samples from the Schizothoracine species, and microsatellite polymorphism was detected by capillary fluorescence electrophoresis. GeneMaker 2.2.0 was used to read the capillary electrophoresis test results. Data were calibrated according to the base repeat unit at each SSR site to obtain genotyping data. Genetic diversity statistics were calculated using PopGene 1.32, including number of alleles (Na), effective number of alleles (Ne), Shannon’s index (I), Nei’s gene diversity (h), and percentage of polymorphic loci (P). Bayesian clustering analysis was performed using Structure software, with the length of the burn-in period parameter and the number of MCMC repeated sampling set to 1 × 105 and 1 × 106, respectively. The K values for the clustering group were set to 1﹣17, with each K value calculated 10 times. A UPGMA dendrogram was generated using Mega 7, with the bootstrap value set at 1 000. [Results] Capillary fluorescence electrophoresis identified 21 highly polymorphic primer pairs suitable for three species (Table 2). These 21 universal primer pairs were used to amplify 309 ind from 16 populations. Among the G. chilianensis populations, Huangyang population showed the highest genetic diversity (Na 1.442, Ne 1.314, I 0.203, h 0.203, P 44.24%), while Zhangye population had the lowest (Na 1.042, Ne 1.042, I 0.029, h 0.021, P 4.24%). For S. pylzovi, Qilian population had the highest genetic diversity (Na 1.539, Ne 1.193, I 0.206, h 0.127, P 53.94%), and Shimen population the lowest (Na 1.236, Ne 1.126, I 0.120, h 0.078, P 23.64%). S. kialingensis showed the highest genetic diversity in the Shimen population (Na 1.351, Ne 1.152, I 0.147, h 0.094, P 35.15%), with the lowest in the Zhouqu population (Na 1.181, Ne 1.089, I 0.088, h 0.057, P 18.18%) (Table 3). Overall, S. pylzovi exhibited higher genetic diversity than G. chilianensis and S. kialingensis. Genetic parameters indicated little intraspecific variation across different populations within species, suggesting comparable genetic diversity levels among populations. Bayesian genotype clustering detected interspecies gene flow between S. pylzovi and G. chilianensis in the Huangyang population, and between S. pylzovi and S. kialingensis in the Shimen population (Fig. 4). A UPGMA dendrogram of 16 Schizothoracine populations based on Nei’s genetic distance showed that S. pylzovi and S. kialingensis populationsformed small branches before clustering into a larger branch. The Shiyang population of S. pylzovi andall G. chilianensis populations formed one distinct branch (Fig. 5). [Conclusion] The genetic diversity of 16 populations across three Schizothoracine species was evaluated, thereby providing valuable insights into their germplasm status and supporting future conservation strategies.

    参考文献
    相似文献
    引证文献
引用本文

杜岩岩,杨濯羽,宋福俊,苏子郡,史小宁,张艳萍,王太.2025.基于高通量测序的三种裂腹鱼微卫星引物筛选及其在遗传多样性分析中的应用.动物学杂志,60(3):414-426.

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-27
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-23
  • 出版日期: