动物个体等级排名算法
作者:
作者单位:

生物多样性与生态工程教育部重点实验室,北京师范大学生命科学学院 北京 100875

作者简介:

刘梦嘉,女,硕士研究生;研究方向:动物行为学;E-mail:202321200073@mail.bnu.edu.cn。

通讯作者:

中图分类号:

Q958

基金项目:

国家自然科学基金项目(No. 32170491);


Animal Dominance Ranking Algorithms
Author:
Affiliation:

Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    等级是指个体的地位具有一定顺序的现象,反映着动物种群的社会结构,在动物的生存、繁殖及种群调节中具有重要意义。动物种群的等级结构包括线性与非线性两种情况。Landau(1951)提出的线性指数h(Landau’s h)可用于量化种群等级结构的线性程度,de Vries(1995)又对该指数的计算方式进行了优化。个体间的等级差异影响自然选择和性选择的作用强度。然而在多数动物中,个体等级在表型上的体现并不明显,需要根据观测数据,使用动物个体等级排名算法计算以确定。动物个体等级排名算法包括基于获胜概率排名的算法,基于获胜频率和对手实力的Clutton-Brock et al.’s index、David’s score算法、基于获胜次数的I & SI、Elo-rating、Randomized Elo-rating算法和基于图论的ADAGIO算法。本文介绍了这些算法的计算过程,对各自的优缺点进行了点评,并基于实际数据比较了不同算法给出的排名结果,最后对实际应用中算法的选择给出了建议。此外,本文还简要介绍了其他领域中排名算法的特点,以期为算法的引入提供借鉴。

    Abstract:

    Dominance hierarchy refers to the phenomenon that the status of each individual in the animal population has a certain order, which not only reflects the social structure of the animal population, but also plays an important role in survival, reproduction and population regulation. The hierarchical structure of animal populations includes both linear and nonlinear cases. The linearity index h (Landau’s h) proposed by Landau (1951) can be used to quantify the degree of linearity of hierarchical structure, and the calculation method of this index was improved by de Vries (1995). Rank differences between individuals affect the strength of natural selection and sexual selection. However, in most animals, individual rank is not obvious in phenotype, which needs to be calculated using the dominance ranking algorithm based on observational data. Existing dominance ranking algorithms include algorithms based on the win probability, win frequency and opponent strength (such as Clutton-Brock et al.’s index, David’s score), the number of wins (such as I & SI, Elo-rating, Randomized Elo-rating), and methods based on Graph Theory i.e., ADAGIO. Based on the field data, we discussed the correlation between these algorithms, and found that ADAGIO, Randomized Elo-rating, I & SI, and David’s score were relatively similar (Fig. 3). The ranking results obtained by Elo-rating and Clutton-Brock et al.’s index are similar, but there are great differences between algorithms based on the win probability and other algorithms (Fig. 4). According to the characteristics of these algorithms and the relationship between algorithms, the recommended algorithm selection in different cases is summarized, so that researchers can choose the appropriate algorithm according to the practical situation. In addition, we briefly introduced the characteristics of ranking algorithms in other fields, to provide a reference for the introduction of new algorithms in animal behavior research.

    参考文献
    相似文献
    引证文献
引用本文

刘梦嘉,夏灿玮.2025.动物个体等级排名算法.动物学杂志,60(1):123-135.

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-03
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-03-04
  • 出版日期: