贵州省四种蝙蝠携带病毒组
作者:
基金项目:

贵州省科技厅自然科学项目(黔科合基础[2016]1004),贵州师范大学地理学一流学科建设项目(黔教科研发[2017]85号),国家重点研发计划项目(No. 2016YFC0503200),国家科技基础条件平台工作重点项目(No. 2005DKA21402)


Viruses Carried by Four Species of Bats in Guizhou Province
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    翼手目(Chiroptera)动物已被确认是人畜共患病毒的重要自然宿主。贵州省翼手目物种多样性资源丰富,包括了2亚目7科19属65种,但在其携带病毒方面的研究仍然不全面。本文基于病毒宏基因组学和sRNA病毒检测,对贵州省广泛分布的大蹄蝠(Hipposiderideros armiger)、三叶蹄蝠(Aselliscus wheeleri)、贵州菊头蝠(Rhinolophus rex)和皮氏菊头蝠(R. pearsoni)携带的病毒进行注释及鉴定。通过分析得到所携带病毒的种类;并比较了贵州省与云南省和广西省3个地区翼手目携带病毒在种类上的差异。结果显示,在4种蝙蝠中检测出脊椎动物病毒、昆虫病毒、植物病毒、细菌病毒4大类,共计53科111属170余种病毒,其中具有公共卫生学意义病毒9科10属46种,如:人疱疹病毒1型病毒(Human herpesvirus 1)、戊型肝炎病毒(Hepatitis E virus)、人乳头瘤病毒16型(Human papillomavirus type 16)等相关的病毒。贵州省与云南省和广西省3个地区的蝙蝠所携带病毒种类比较发现,只有腺病毒科(Adenoviridae)和逆转录病毒科(Retroviridae)均存在于3个省份的蝙蝠体内,说明病毒种类在不同地域分布的蝙蝠种类中存在较大的差异。贵州省分布的大蹄蝠、三叶蹄蝠、贵州菊头蝠和皮氏菊头蝠携带病毒的种类较多,其病毒种类在公共卫生学上具有一定的代表性,对开展贵州省分子流行病学调查具有重要价值。

    Abstract:

    Chiroptera has been identified as a natural reservoir of emerging infectious diseases for carrying zoonotic viruses. An astonishing amount of genetic diversity of viruses has been isolated from the bats in different populations throughout the world. The diversity resource of chiropteran species in Guizhou province is abundant, consisting 65 species, 19 genera and 7 families of 2 suborders. However, there has been limited research on their zoonotic viruses. In this study, 253 faecal samples and 258 bat tissue samples were collected in Guizhou Province, including 10 species in 2 families, 6 genera (S1). Based on viral metagenomics and sRNA virus detection, this research identified the viruses carried by four species of bats that are widely found in Guizhou Province. By analysing different types of bat viruses, and comparing the species differentiation between bats from Guizhou and those from Yunnan and Guangxi, the study detected four types of viruses in four bat species, including vertebrate viruses, insect viruses, plant viruses and bacterial viruses. Furthermore, there were totally 53 families, 111 genera and more than 170 virus species found, including 9 families, 10 genera and 46 species with public health significance, such as Human herpesvirus 1, Hepatitis E virus, Human papillomavirus type 16 (S2). The comparison of virus species among the three regions revealed that only Adenoviridae and Retroviridae were found in the bats inhabiting in all the three provinces, which might indicate that there could be large differences in types of bat viruses distributed in different regions. Since Chiropterans in Guizhou are found to carry a wide range of virus species which have certain representativeness in public health, it is crucial to carry out further molecular epidemiological investigations.

    参考文献
    Altschuli S F, Madden T L, Schaffer A A, et al. 1997. Gapped Blast and Psi-Blast: a new generation of protein database search programs. Nucleic Acids Research, 25(17): 3389–3402. Anthony S J, Epstein J H, Murray A, et al. 2013. A strategy to estimate unknown viral diversity in mammals. Mbio, 4(5): 36–38. Aparicio G, Gotz S, Conesa A, et al. 2006. Blast2GO goes grid: developing a grid-enabled prototype for functional genomics analysis. Studies in Health Technology and Informatics, 120(5): 194–204. Ashburner M, Ball C A, Blake J A, et al. 2000. Gene ontology: tool for the unification of biology. Nature Genetics, 25(1): 25–29. Calisher C H, Childs J E, Field H E, et al. 2006. Bats: important reservoir hosts of emerging viruses. Clinical Microbiology Reviews, 19(3): 531–545. Cha K B. A. 2003. Novel approach for collecting samples from fruit bats for isolation of infectious agents. Icrobes and Infection, 5(6): 487–490. Chua K B, Koh C L, Hooi P S, et al. 2002. Isolation of Nipah virus from Malaysian Island flying-foxes. Microbes and Infection, 4(2): 145–151. Drosten C, Gunther S, Preiser W, et al. 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. The New England Journal of Medicine, 348(20): 1967–1976. Epstein J H, Prakash V, Smith C S, et al. 2008. Henipavirus infection in Fruit Bats (Pteropus giganteus), India. Emerging Infectious Diseases, 14(8): 1309–1311. Finn R D, Bateman A, Clements J, et al. 2014. Pfam: the protein families database. Nucleic Acids Research, 10(3): 222–230. Ge X, Li Y, Yang H. 2012. Metagenomic Analysis of viruses from bat fecal samples reveals many novel viruses in insectivorous bats in China. Journal of Virology Mar, 8(86): 4620–4630. Guan Y, Zheng B J, He Y Q, et al. 2003. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science, 302(5643): 276–278. Halpin K, Young P L, Field H E, et al. 2000. Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus. Journal of General Virology, 81(8): 1927–1932. He B, Fan Q S, Yang F L, et al. 2013. Hepatitis virus in long-fingered bats, Myanmar. Emerging Infectious Diseases, 19(4): 638–640. Lau S K, Woo P C, Li K S, et al. 2005. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proceedings of the National Academy of Sciences of the United States of America, 102(39): 14040–14045. Leroy E M, Kumulungu B, Pourrut X, et al. 2005. Fruit bats as reservoirs of Ebola virus. Nature, 438(7068): 575–576. Li Y, Wang J, Hickey A C, et al. 2008. Antibodies to Nipah or Nipah-viruses in bats, China. Emerging Infectious Diseases, 14(12): 1974–1976. Misstry J, Finn R D, Eddy S R, et al. 2013. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Research, 41(12): 56–60. Moratell R, Calisher C H. 2015. Bats and zoonotic viruses: can we confidently link bats with emerging deadly viruses? Memorias Do Instituto Oswaldo Cruz, 110(1): 1–22. Peiris J J, Yuen K Y, Osterhaus A D, et al. 2003. The severe acute respiratory syndrome. The New England Journal of Medicine, 349(25): 2431–2441. Plowright R K, Eby P, Hudson P J, et al. 2015. Ecological dynamics of emerging bat virus spillover. Proceedings of the Royal Society B: Biological Sciences, 2124(282): 2014–2124. Sun X, Shi Y, Lu X, et al. 2013. Bat-derived influenza Hemagglutinin H17 does not bind canonical Avian or Human receptors and most likely uses a unique entry mechanism. Cell Reports, 3(3): 769–778. Tong S, Li Y, Rivailer P, et al. 2012. A distinct lineage of influenza A virus from bats. Proceedings of the National Academy of Sciences of the United States of America, 109(11): 4269–4274. Tong S, Zhu X, Li Y, et al. 2013. New World bats harbor diverse influenza A viruses. PLoS Pathogens, 9(10): 23–27. Wang L F, Walker P J, Poon L L. 2011. Mass extinctions, biodiversity and mitochondrial function: are bats ‘special’ as reservoirs for emerging viruses. Current Opinion in Virology, 6(1): 8–10. Woo P C Y, Lau S K P, Li K S M. 2006. Molecular diversity of coronaviruses in bats. Virology, 1(351): 180–187. Wu Z X, Ren L, Yang Y, et al. 2012. Virome analysis for identification of novel mammalian viruses in bat species from Chinese Provinces. Journal of Virology, 86(20): 145–150. Wu Z, Yang L, Ren X, et al. 2016. Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases. International Society for Microbial Ecology, 10(3): 609–620. Yadav P D, Rayt C G, Shete A M, et al. 2012. Short report: detection of Nipah virus RNA in fruit bat (Pteropus giganteus) from India. The American Journal of Tropical Medicine and Hygiene, 87(3): 576–578. Yob J M, Rashd A M, Morrissy C J, et al. 2001. Nipah virus infection in bats (order Chiroptera) in peninsular Malaysia. Emerging Infectious Diseases, 7(3): 439–441. Young P L, Halpin K, Selleck P W, et al. 1996. Serologic evidence for the presence in Pteropus bats of a paramyxovirus related to equine morbillivirus. Emerging Infectious Diseases, 2(3): 239–240. Yuan J, Zhang Y, Li J, et al. 2012. Serological evidence of ebolavirus infection in bats, China. Virology Journal, 9(1): 236–237. Zhu X Y, Yu W L, Mcbride R, et al. 2013. Hemagglutinin homologue from H17N10 bat influenza virus exhibits divergent receptor-binding and pHdependent fusion activities. Proceedings of the National Academy of Sciences of the United States of America, 110(4): 1458–1463. 蔡建秋. 2017. 蝙蝠感染丝状病毒的血清学调查. 吉林: 吉林大学硕士学位论文. 何彪. 2014. 蝙蝠病毒组学及其新病毒的发现与鉴定. 北京: 中国人民解放军军事医学科学院博士学位论文. 何彪. 2015. 亚洲首株蝙蝠丝状病毒的鉴定 // 中国畜牧兽医学会动物传染病学分会, 解放军军事医学科学院军事兽医研究所. 中国畜牧兽医学会动物传染病学分会第十六次学术研讨会论文集. 济南: 中国畜牧兽医学会动物传染病学分会第十六次学术研讨会, 34–38. 蒋志刚, 马勇, 吴毅, 等. 2015. 中国哺乳动物多样性及地理分布. 北京: 科学出版社. 罗蓉. 1993. 贵州兽类志. 贵阳: 贵州科技出版社. 杨蓝萍, 张天寿, 袁晓平, 等. 1993. 从云南蝙蝠及牛蜱中分离出两株森林脑炎病毒. 中国人兽共患病杂志, 9(1): 22–23. 张海林. 2015. 我国蝙蝠携带新发现病毒的研究进展. 中国媒介生物学及控制杂志, 26(3): 223–227. 张海林, 施华芳, 刘丽华, 等. 1989. 从云南省蝙蝠中分离基孔肯雅病毒及血清抗体调查. 病毒学报, 5(1): 31–36. 张海林,张云智,黄文丽,等. 2001. 从云南省蝙蝠脑组织中分离出乙型脑炎病毒. 中国病毒学, 16(1): 74–77. 赵春生, 蒋廉华, 余兴龙, 等. 1997. 从海南省蝙蝠脑中分离出1株罗斯河病毒及其血清抗体调查. 中国兽医学报, 17(3): 241–243. 朱爱薇. 2018. 蝙蝠细小病毒多样性分析及蝙蝠圆环病毒感染性克隆构建. 吉林: 吉林大学硕士学位论文.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

肖宁,曾祥,周江.2020.贵州省四种蝙蝠携带病毒组.动物学杂志,55(3):339-352.

复制
文章指标
  • 点击次数:967
  • 下载次数: 1864
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2019-11-12
  • 最后修改日期:2020-04-30
  • 录用日期:2020-04-26
  • 在线发布日期: 2020-06-12