家鸽不同状态下脑电节律特异性分析
作者:
作者单位:

① 郑州大学电气工程学院 郑州 450001; ② 河南省脑科学与脑机接口技术重点实验室 郑州 450001

基金项目:

国家自然科学基金项目(No. U1304602)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [1]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    人类大脑神经电活动的不同节律与不同的状态有关,而其他物种如鸟类不同状态下脑信号的节律特异性尚不明确。本文通过分析家鸽(Columba livia domestica)在麻醉昏迷、清醒安静、自由探索三种典型状态下的局部场电位(LFP)信号,研究家鸽不同意识状态下神经电活动的节律特异性。首先采集不同状态下的LFP信号,提取δ(1 ~ 4 Hz)、θ(4 ~ 8 Hz)、α(8 ~ 12 Hz)、β(15 ~ 30 Hz)、γ(30 ~ 60 Hz)五个节律;然后使用小波变换进行时频分析,通过统计时频图的定性观察和小波能量的统计分析,使用Friedman检验进行统计假设检验,研究各状态不同节律的特异性,并基于样本熵分析信号复杂度,探索产生这种节律特异性的可能原因。结果表明,随着意识越来越清晰,较低频的δ、θ、α节律受到明显抑制(P < 0.001),而较高频的γ节律活动明显增强(P < 0.001);样本熵的分析表明,这可能是由于节律频带越高,信号样本熵越大,对应了从麻醉、清醒到自由探索意识清晰程度的提高。家鸽不同状态下神经电活动节律特异性的研究,有助于增进对不同物种脑信号节律编码机制的理解。

    Abstract:

    Different rhythms of brain electrical activity in humans are related to different consciousness states, while the specificity of different rhythms of neural signals in different states of other species such as birds is not yet clear. In this paper, we studied the rhythm specificity of neural activity in pigeons (Columba livia domestica) under different states of consciousness: anesthetic coma, consciously quiet, and freely exploring, by analyzing the local field potential (LPF) signals. Firstly, LPF signals in different states were collected. Then, five rhythms including delta (1﹣4 Hz), theta (4﹣8 Hz), alpha (8﹣12 Hz), beta (15﹣30 Hz) and gamma (30﹣60 Hz) were extracted.. Finally, time-frequency analysis was carried out by using wavelet transform, studying the characteristics of different rhythms by observation of statistical time-frequency diagram and statistical analysis of wavelet energy. We also analyzed the complexity of signals based on the Sample Entropy to explore the possible reasons for this rhythm specificity. The statistical hypothesis testing was carried out by Friedman test. Results showed that as the brain became clear and clear, the low-frequency rhythms delta, theta, and alpha, were significantly inhibited (P < 0.001, Fig. 3), while the activity of high-frequency rhythm, gamma was significantly enhanced (P < 0.001, Fig. 3). We then did statistical hypothesis testing for sample entropy of neural signal in different rhythms, and the results of Friedman test showed that the higher the rhythm frequency band, the greater the signal sample entropy (P < 0.001, Fig. 4), corresponding to the improvement of consciousness clarity from anesthesia, awakening to free exploring. The study on the rhythm specificity of neural electrical activity in pigeons under different conditions will make contribution to the understanding of the encoding mechanism of neural rhythm in different species.

    参考文献
    Buzsaki G. 2006. Rhythms of the Brain. Oxford: Oxford University Press, 137–175. Cavanagh J F, Frank M J. 2014. Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18(8): 414–421. Chen W, Zhuang J, Yu W, et al. 2009. Measuring complexity using fuzzyen, apen, and sampen. Medical Engineering & Physics, 31(1): 61–68. Colgin L L. 2013. Mechanisms and functions of theta rhythms. Annual Review of Neuroscience, 36: 295–312. Engel A K, Fries P. 2010. Beta-band oscillations—signalling the status quo? Current Opinion in Neurobiology, 20(2): 156–165. Fries P. 2009. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annual Review of Neuroscience, 32: 209–224. Liu X, Wan H, Li S, et al. 2017. The role of nidopallium caudolaterale in the goal-directed behavior of pigeons. Behavioural Brain Research, 326: 112–120. Lundqvist M, Herman P, Warden M R, et al. 2018. Gamma and beta bursts during working memory readout suggest roles in its volitional control. Nature Communications, 9(1): 394. Munn R G K, Tyree S M, McNaughton N, et al. 2015. The frequency of hippocampal theta rhythm is modulated on a circadian period and is entrained by food availability. Frontiers in Behavioral Neuroscience, 9(11): 61. Nikulin V V, Brismar T. 2006. Phase synchronization between alpha and beta oscillations in the human electroencephalogram. Neuroscience, 137(2): 647–657. Reinhart R M G, Nguyen J A. 2019. Working memory revived in older adults by synchronizing rhythmic brain circuits. Nature Neuroscience, 22(5): 820–827. Schroeder C E, Lakatos P. 2009. Low-frequency neuronal oscillations as instruments of sensory selection. Trends in Neurosciences, 32(1): 9–18. Scollo-Lavizzari G, Hess R. 1969. Generalized epilepsy by focal subcortical lesions // Gastaut H, Jasper H, Bancaud J, et al. The Physiopathogenesis of the Epilepsies. Springfield IL: CC Thomas Publisher, 249–268. Tienhoven R B A V. 1969. A stereotaxic atlas of the brain of the pigeon (Columba livia). The Auk, 86(1): 152–153. Walczak B, Massart D L. 1997. Noise suppression and signal compression using the wavelet packet transform. Chemometrics and Intelligent Laboratory Systems, 36(2): 81–94. Yang L, Li M, Wan H, et al. 2018. Analysis of non-task state-specific rhythms in nidopallium caudolaterale of Pigeons // Li W, Li Q, Wang L, et al. 2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics. Washington: IEEE, 1–5. 蔡雷, 王浩, 王文波, 等. 2014. 家鸽慢性电刺激用电极转接装置及其固定方法. 动物学杂志, 46(2): 280–285. 封洲燕, 郑筱祥. 2004. 不同麻醉深度下大鼠脑电复杂度和功率谱的变化过程. 中国生物医学工程学报, 23(1): 87–92. 万红, 师黎, 刘新玉, 等. 家鸽脑立体四点定位装置. 中国专利CN104921836A [2015-09-23]. [P/OL]. http://cprs.patentstar. com.cn/Search/Detail?ANE=9CFA9GEB8BGA9GEG2BAA7BGA6DBA9FAC9ICF9FBF9CCEADIA. 许敏鹏, 李榕, 明东. 2019. 选择性注意与节律性神经振荡关系综述. 生物医学工程学杂志, 36(2): 320–324.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

胡一凡,周怡君,杨莉芳,李蒙蒙,尚志刚.2019.家鸽不同状态下脑电节律特异性分析.动物学杂志,54(6):860-866.

复制
文章指标
  • 点击次数:1128
  • 下载次数: 1601
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2019-07-15
  • 最后修改日期:2019-10-22
  • 录用日期:2019-10-18
  • 在线发布日期: 2019-12-10