• 首页关于本刊期刊订阅编委会作者指南过刊浏览
陈炫妤,陆化杰,何静茹,王洪浩,刘凯,陈子越,陈新军.2021.日本海舍氏贝乌贼角质颚形态特征分析.动物学杂志,56(6):918-928.
日本海舍氏贝乌贼角质颚形态特征分析
Analysis of Beak Morphological Characteristic of Berryteuthis magister shevtsovi in Japan Sea
投稿时间:2021-03-22  修订日期:2021-11-14
DOI:10.13859/j.cjz.202106014
中文关键词:  舍氏贝乌贼  角质颚  形态特征  生长特性  日本海
英文关键词:Berryteuthis magister shevtsovi  Beak  Morphological characteristic  Growth characteristic  Japan Sea
基金项目:国家重点研发计划项目(No. 2019YFD090402),国家自然科学基金青年基金项目(No. 41506184)
作者单位E-mail
陈炫妤 上海海洋大学海洋科学学院 上海 201306 xychen19@163.com 
陆化杰 上海海洋大学海洋科学学院 上海 201306国家远洋渔业工程技术研究中心 大洋渔业资源可持续开发省部共建教育部重点实验室农业农村部大洋渔业开发重点实验室 农业农村部大洋渔业资源环境科学观测实验站 上海 201306 hjlu@shou.edu.cn 
何静茹 上海海洋大学海洋科学学院 上海 201306 1554428252@qq.com 
王洪浩 上海海洋大学海洋科学学院 上海 201306 975719417@qq.com 
刘凯 上海海洋大学海洋科学学院 上海 201306 3330386454@qq.com 
陈子越 上海海洋大学海洋科学学院 上海 201306 547255818@qq.com 
陈新军 上海海洋大学海洋科学学院 上海 201306国家远洋渔业工程技术研究中心 大洋渔业资源可持续开发省部共建教育部重点实验室农业农村部大洋渔业开发重点实验室 农业农村部大洋渔业资源环境科学观测实验站 上海 201306 xjchen@shou.edu.cn 
摘要点击次数: 304
全文下载次数: 270
中文摘要:
      角质颚作为头足类的摄食器官,蕴含丰富的生态信息。根据2018年中国鱿钓船在日本海采集的303尾舍氏贝乌贼(Berryteuthis magister shevtsovi)样本,对其角质颚形态特征进行了分析。主成分分析显示,上头盖长、上喙长和上喙宽可解释舍氏贝乌贼上颚形态特征80.71%的信息,选为上颚的外形表征参数,下头盖长、下脊突长和下喙长可解释形态特征81.57%的信息,选为下颚的外形表征参数。协方差分析表明,舍氏贝乌贼角质颚外形表征参数与胴长和体重的关系均不存在性别间显著性差异。方程拟合和赤池信息准则结果表明,上头盖长与胴长的生长关系最适合用线性方程表示,而上喙长、上喙宽、下头盖长、下脊突长和下喙长与胴长的生长关系均最适用对数方程表示。上头盖长与体重的生长关系最适合用线性方程表示,而上喙长、上喙宽、下头盖长、下脊突长、下喙长与体重的生长关系均最适用对数方程表示。表征参数及其与胴长(或体重)关系式的确定,为后续利用角质颚外形进行种群鉴定和资源评估打下了基础。
英文摘要:
      Beaks contain a lot of ecological information as feeding organ of cephalopods. According to the measurement of the morphological parameters of the beak from 303 Berryteuthis magister shevtsovi samples collected by Chinese jigging vessels in the Japan Sea in January 2018, the morphologic growth characteristic of beaks was studied. A total of 12 external morphological parameters of upper and lower beaks were analyzed by using SPSS. When the cumulative contribution rate of principal components was greater than 75%, the external morphological parameters with high coefficient were selected as the characterization parameters. Linear, exponential, power and logarithmic mathematical models were used to fit the relationship between external morphological parameters of beaks and mantle length (ML) and body weight (BW) by Excel. Akachi Information Criterion and correlation coefficient were used to compare the growth models. The principal component analysis showed the upper hood length (UHL), upper rostrum length (URL) and upper rostrum width (URW) could account for 80.71% of morphological characteristics of upper beak, and were selected main morphological parameters of upper beak and lower hood length (LHL), lower crest length (LCL) and lower rostrum length (LRL) could account for 81.57% of morphological characteristics of lower beak, and were selected main morphological parameters of lower beak (Table 2 and 3). Results of the analysis of covariance (ANCOVA) showed that there was no significant gender difference in the relationships between all morphological characteristic parameters and mantle length and body weight. According to equation fitting and Akaike’s information criterion, the relationship between UHL and ML was most suitable to be expressed by a linear equation, while the relationship between URL, URW, LHL, LCL and LRL and ML was most suitable for a logarithmic equation; the relationship between UHL and BW was described by linear function (Fig. 4), and logarithm functions were best for URL, URW, LHL, LCL and LRL. The determination of characteristic parameters and growth equation laid the foundation of population identification and resource assessment by using beak morphology in the further.
查看全文  查看/发表评论  下载PDF阅读器