• 首页关于本刊期刊订阅编委会作者指南过刊浏览
钱子衿,林友福,杨雨婷,陈书涵,胡亚萍,周旭,李宏,丁晖,陈炼.2021.苏州市入侵福寿螺的遗传多样性.动物学杂志,56(6):929-938.
苏州市入侵福寿螺的遗传多样性
Genetic Diversity of Invasive Pomacea Snails in Suzhou City
投稿时间:2021-03-11  修订日期:2021-11-12
DOI:10.13859/j.cjz.202106015
中文关键词:  福寿螺  线粒体COI基因  EF1α基因  遗传多样性
英文关键词:Pomacea  mtDNA COI gene  EF1α gene  Genetic diversity
基金项目:国家自然科学基金项目(No. 31770402),生态环境部生物多样性保护重大工程项目(No. ZDGC2019-013-01),南京林业大学大学生创新训练计划项目(No. 2020NFUSPITP0711)
作者单位E-mail
钱子衿 南京师范大学生命科学学院 南京 210023 18120150250@163.com 
林友福 南京林业大学生物与环境学院 南京 210037 15967347495@163.com 
杨雨婷 南京林业大学生物与环境学院 南京 210037 277577956@qq.com 
陈书涵 南京林业大学林学院 南京 21003 3180170537@qq.com 
胡亚萍 生态环境部南京环境科学研究所自然保护与生物多样性研究中心 南京 210042国家环境保护武夷山生态环境科学观测研究站 南京 210042 1182156109@qq.com 
周旭 生态环境部南京环境科学研究所自然保护与生物多样性研究中心 南京 210042国家环境保护武夷山生态环境科学观测研究站 南京 210042 zhouxu_1359@163.com 
李宏 南京师范大学生命科学学院 南京 210023 njlihong@outlook.com 
丁晖 生态环境部南京环境科学研究所自然保护与生物多样性研究中心 南京 210042国家环境保护武夷山生态环境科学观测研究站 南京 210042 nldinghui@qq.com 
陈炼* 南京林业大学生物与环境学院 南京 210037 chenlian_2004@163.com 
摘要点击次数: 424
全文下载次数: 660
中文摘要:
      福寿螺属(Pomacea)中的小管福寿螺(P. canaliculata)和斑点福寿螺(P. maculata)形态相似,入侵能力很强,严重危害水稻和其他水生植物。本研究基于线粒体细胞色素氧化酶亚基I(COI)基因和核基因EF1α序列,应用软件DnaSP 5.0、Arlequin 3.1.1、MEGA 7.0和PhyloSuite进行遗传参数统计、构建贝叶斯系统发育树,分析了来自江苏省苏州市虎丘区、吴中区、昆山周市镇、千灯镇和玉山镇共5个采样地的40只福寿螺(Pomacea spp.)的种类及其遗传多样性。结果表明,获得40条长度为605 bp的线粒体COI基因序列,经序列比对后发现有74个变异位点、4种单倍型。小管福寿螺有34只,分属3种单倍型(PcaH1 ~ PcaH3),小管福寿螺的单倍型多样性(h)和核苷酸多样性(π)分别为0.399和0.017。斑点福寿螺有6只,仅有1种单倍型(PmaH1)。苏州地区小管福寿螺和斑点福寿螺遗传多样性均较低。基于线粒体COI基因系统发育分析结果表明,苏州市的小管福寿螺可能与阿根廷的小管福寿螺亲缘关系较近,而苏州市的斑点福寿螺可能与巴西的斑点福寿螺亲缘关系较近。此外,昆山市周市镇是新发现的小管福寿螺和斑点福寿螺同域分布地区。苏州、昆山的9个福寿螺样本共获得430 bp的核基因EF1α序列28条,发现有40个变异位点和9种单倍型(EFHAP1 ~ EFHAP9),其中,小管福寿螺有8种单倍型(EFHAP1 ~ EFHAP5和EFHAP7 ~ EFHAP9),斑点福寿螺有2种单倍型(EFHAP5和EFHAP6)。基于线粒体COI基因和核基因EF1α序列构建的系统发育树,小管福寿螺和斑点福寿螺存在遗传信息混杂的现象,提示两种螺存在杂交。
英文摘要:
      Pomacea canaliculata and P. maculata have similar morphological characteristics. They are the two most common and highly invasive apple snail species, which seriously damage crops and aquatic ecosystem in China. The present study identified the species and analyzed the genetic diversity of 40 samples of Pomacea spp. from five sampling sites in Suzhou city, Jiangsu Province, based on their mitochondrial cytochrome I oxidase subunit (COI) and nuclear gene (EF1α) sequences. Some genetic diversity parameters were analyzed by DnaSP 5.0, and the base composition, the number of nucleic site replacement were analyzed by MEGA 7.0. A Bayesian phylogenetic tree was constructed using PhyloSuite. The results showed that a total of 40 mitochondrial COI gene sequences with a length of 605 bp were obtained in 40 samples, and a total of 74 variable sites and 4 haplotypes were detected among all sequences (Table 1). The 34 samples in Suzhou were P. canaliculata, and the other 6 samples were P. maculata. Among them, three haplotypes (PcaH1﹣PcaH3) were found in P. canaliculata and one haplotype (PmaH1) was found in P. maculata (Table 1). The haplotype diversity (h) and nucleotide diversity (π) of P. canaliculata were 0.399 and 0.017, respectively. Only one haplotype was found in P. maculata. Compared with other invasive areas of China, the genetic diversity of P. canaliculata and P. maculata from Suzhou city were low. Based on the phylogenetic relationship of mitochondrial COI gene, it was suggested that P. canaliculata probably traced back to Argentina, while P. maculata in Suzhou city were probably originated from Brazil. In addition, Zhoushi town in Kunshan city was a newly discovered sympatric distribution area of these two species. Based on nuclear gene (EF1α) sequences, 28 nuclear gene (EF1α) sequences with a length of 430 bp were obtained in 9 samples selected from Suzhou City and Kunshan City after cycle sequencing. A total of 40 variable sites and 9 haplotypes (EFHAP1﹣EFHAP9) were detected among all sequences (Table 1). Eight haplotypes (EFHAP1﹣EFHAP5, EFHAP7﹣EFHAP9) were found in P. canaliculata and two haplotypes (EFHAP5 and EFHAP6) were found in P. maculata (Table 1). Phylogenetic tree analysis based on mitochondrial COI gene and nuclear EF1α gene suggested that there was genetic exchange between P. canaliculata and P. maculata (Fig. 1 and Fig. 2), indicating that hybridization between P. canaliculata and P. maculata exists.
附件
查看全文  查看/发表评论  下载PDF阅读器