团头鲂九项血液学指标的正常值*

沈晓民

华 苒

(中国水产科学院东海水产研究所)

(上海市水产研究所)

摘要 本文对团头鲂九项血液学指标的正常值进行了研究。这九项指标是: RBC、ESR,Ht、Hb、PTP、PGC、MCV、MCH、MCHC。本文用三种方法,分布估计法、容许区间法和正态区间估计法,对正常值区间进行了估计,其中分布估计法因区间范围窄,因而结论较为可靠。根据这一方法所得出的九项血液学指标正常值区间是: 185.30×10^4 个/mm³—274.95 × 10^4 个/mm³(RBC)、0.08mm/小时—1.25 mm/小时(ESR)、36.80%—68.84%(Ht)、4.46g/100ml—9.87g/100ml(Hb)、2.69g/100ml—5.98g/100ml(PTP)、91.47 mg/100ml—301.85 mg/100ml(PGC)、158.80 μ ³—299.45 μ ³(MCV)、20.67 Pg—42.81Pg(MCH)、9.29%—21.24%(MCHC)。在具体条件下判定血液指标值是否属正常时,还应考虑生长和水温不同带来的差异。

鱼类的血液指标与体内代谢状况息息相关,因而被广泛地用来评价鱼类的健康状况、营养状况以及对环境的适应状况,是良好的生理、病理和毒理学指标。然而,开展这方面的工作,必须首先了解鱼类血液指标的正常值,这样才能比较对照。国内外对一些主要养殖对象,如鲢鱼、鲤鱼、鲫鱼、草鱼、黄鳝、虹鳟、鳗鲡等的血液指标的正常值已有不少研究和报道[2-1,8]。但是,对于作为我国淡水增养殖主要鱼种的团头鲂(Megalobrama amblycephala)这方面的工作尚属空白。因此,作者对团头鲂九项血液指标的正常值进行了初步的研究。

一、材料和方法

实验用团头鲂取自上海郊区淀山湖附近的 大葑藻10亩网围养鱼试验点,采样时间是1986 年3一12月,每月取一次,其中4月、6月、10 月的标本因故未取到。标本用投饵诱捕方法捕 取。标本捕取后,选择身体健康,行动活泼的标 本放在网箱内饥饿暂养24小时,而后测体长、 体重并进行空腹抽血。抽血所用注射器先用 1%的肝素钠洗涤,然后烘干,再用其从团头鲂 尾动脉抽血。根据测定方法不同,一部分血标 本全血保存,另一部分先以3000转/分的转速 离心 20 分钟,然后取上清液制备血浆。

所测定的九项血液指标是: 红细胞计数 (RBC)、红细胞沉降率 (ESR)、红细胞 比积 (Ht)、血红蛋白量 (Hb)、血浆总蛋白 (PTP)、血浆葡萄糖(PGC)、红细胞平均体积 (MCV)、红细胞平均血红蛋白量 (MCH)、红细胞平均血红蛋白素 (MCH)、红细胞平均 血红蛋白浓度 (MCHC)。各指标测定方法如下:

- 1. RBC 用 85% 氯化钠溶液将血液稀 释 200 倍,用 Neubarner 计数板在显微 镜下 计数。
- 2. ESR 和 Ht 用克氏沉降管测定 每小时红细胞的沉降值即 ESR, 然后以 3000 转/分转速离心 20 分钟,计算 Ht。
 - 3. Hb 用氰高铁血红蛋白法测定。
 - 4. PGC 用邻甲苯胺法测定。

以上测定项目中 RBC、ESR、Ht 和 Hb 用 全血测定, PTP 和 PGC 用血浆测定, MCV、 MCH、MCHC 用 RBC、Ht、Hb 经计算得到。

二、结果

体长和水温对血液指标数值的影响难以消

^{*} 本项工作得到了业师贴柱教授,童合一,除马康副教授的指导,在此深表感激!

表 1 九项血液指标与体长、体重的相关关系*

血液指标生长指标	RBC	ESR	Ht	Нь	PTP	PGC	мсч	мсн	мснс
体长	0.08	-0.25	0,24	0.58	0.33	0.34	0.18	0.53	0.32
体重	0.01	-0.19	81.0	1.58	0.34	0.40	0.17	0.60	0.37

^{*} 临界值 70.05= 0.158, 70.07= 0.203,

表 2 不同体长组标本的五项血液指标值

项目 体长 (cm)	尾数	平均体长 (cm)	Hb (g/100ml)	PTP (g/100ml)	PGC (mg/100ml)	MCH(Pg)	MCHC(v%)
<14	5	13.36	7.04	3.77	140.56	29.92	15,43
1416	25	14.85	6.75	4.05	150.0:	30.29	13.89
16—18	21	16.87	6.58	3.40	133.63	28.69	1 (3.39
18-20	31	19.00	7.26	4.42	153.71	31.50	14.63
20-22	31	20.94	7.72	4.42	188.07	35.18	15.61
22—24	33	23,00	8,18	4,41	179.40	36.18	15.57
24-26	20	24.86	8,51	4,42	173.85	35.79	16.37
26-29	18	27.30	8,81	4,58	196.22	39.35	16.74
29<	6	30.20	9,31	4.92	199.86	37.71	16.83

表 3 不同水退下五项血液指标值

项目 水温(℃)	月份	尾数	RBC (10 ⁴ 个/mm ³)	ESR (mm/hr.)	Ht(%)	Hb (g/100ml)	PGC (mg/100ml)
	3	23	230.16	0.82	46.53	5.28	135.48
21.5	5	32	233.32	0.53	51,54	7.11	151.05
29	7	26	129.04	0.67	53.08	8.07	138.69
28.8	8	28	238.88	0.39	56.19	8.28	136.78
20.5)	30	245.30	0.35	56.49	9.31	155.59
10	11	25	221.02	0.68	46.93	7.49	213.74
5	12	26	199.58	0.82	46.97	7.84	235.97

表 4 团头鲂九项血液指标的统计值

统计值 指标	尾敖	投差	中位數	平均值(茅)	标准差(i)	变异系数 (ev)
RBC(10 ⁴ 个/mm ³)	190	119.00	230.50	228.85	22.75	0.10
£SR(mm/hr.)	190	1.95	0.50	0.60	0.35	0.58
Ht(%)	190	38.73	50.00	51.32	7.88	0.15
Hb(g/100ml)	190	6.46	7,83	7:69	1.33	0.17
PTP(g/100ml)	190	4.34	4.14	4.18	0.93	0.22
PGC(mg/100ml)	190	266.64	156.09	168.33	52.63	9.31
$MCV(\mu^{i})$	190	233,07	255.63	225.54	35.34	0.16
MCH(Pg)	190	28.18	34.47	33.79	5.84	0.17
MCHC(%)	190	19.96	15.66	15.20	2.91	0.19

除,故先给出体长,水温对血液指标值变化影响 的研究结果,然后再给出一定概率保证下的血 液各指标正常值区间。

(一)体长、体重与血液各指标的关系 表 (1)为九项血液指标与体长、体重的相关系数。从表(1)可见,ESR、Ht、Hb、PTP、PGC、MCH、MCHC 与体长相关关系十分显著。Hb、PTP、PGC、MCH、MCHC 与体重的相关关系十分显著。综合上述结果,可以认为 Hb、PTP、PGC、MCH、MCHC 这五个血液指标与生长 有 很密切的关系。将这五个指标值按不同体长组列出表 2,可以进一步显示出血液指标受体 长影响的变化趋势。

(二)水温与血液指标的关系 水温 与九项血液指标相关关系的计算结果 表明: RBC、ESR、Ht、Hb、PGC 与水温的相关关系十分显著,分别为 0.40、-0.33、0.40、0.36、-0.56(临界值 $r_{0.07}=0.158$),而 PTP、MCV、MCH、MCHC 与水温的相关关系不显著,它们的相关系数分别为 0.14、0.15、0.10、0.03。表 (3) 列出了不同水温、不同季节的 RBC、ESR、Ht、PGC、Hb 值,用以讨论影响血液指标的因素,并且也有助于查找指标值偏离正常范围的原因。

(三)团头鲂九项血液指标正常值范围 对极差、中位数、平均值(毫)、标准差(s)和变异系数(cv)等血液指标数据的统计值进行了观察(表 4),其中平均值和中位数反映了血液指标值的平均状况,二者之间相差不大。极差、标准差和变异系数反映了血液指标值数据的分散程度。由于变异系数消除了平均大小不同给方差带来的影响,便于相互比较。从表(4)可见,ESR 变异系数大,为0.58,其次是 PGC,为0.31。ESR 测定数据分布较散的原因是我们测定用血沉管为克氏管,误差较大。除了 ESR、PGC 以外,其它各项指标值的变异系数较小,一般在 0.2 以下。

根据皮尔逊公式 $x^2 = \frac{(f_i - nP_i)^2}{nP_i}$ 对每个

指标的 190 个数据来自同一个正态分布的假设 进行检验,各指标数据计算的结果均拒绝该假 设 (P < 0.05)。也就是说,各指标的数据均不取自正态分布总体。一般地确定标准值范围有两种方法,Reed^[6] 等曾指出,如果数据样品分布是未知的,则非参数方法产生的误差要小于参数方法。因此,本文采用两种非参数方法估计每一血液正常值范围值阈,一种是分布估计法 (PE)^[6],另一种是容许区间法 (TI)^[7]。表5给出了带上下限区间及上下 限95—70%分布估计的置信区间和95—70%的容许区间。 作为可照也给出通常的 x ± 21 正态分布置信区间。从表(5)可见,根据数据计算的结果,PE、TI 和正态分布区间范围差别不是很大。 其中PE的95—70%分布估计范围介于另两种方法之间,区间范围较小。

三、讨 论

血液指标值的大小受到许多因素的影响,根据已有文献^[2-4],这些因素主要是运动、饱食、性别、生长、水温和溶解氧。考虑到血液指标的正常值应主要反映养殖条件下的正常生理状况。本试验取样地点设在网围,所选网围的大小与池塘相近,以限制鱼群活动范围,消除凶猛鱼的影响,保持环境相对稳定。此外网围水体内溶解氧丰富。为了消除饥饿程度不同对血液指标的影响,取样后团头鲂一律饥饿 24 小时。另外,性腺解剖的结果表明:所用标本的性腺发育均为 1—III 期,均属未成熟,尽可能减少了因性别和性腺发育程度不同 所造成的差异。因此,在本试验中,除了生长和水温外,其它因素对血液指标波动的影响可以认为是很小的。

生长和水温同大部分血液指标密切相关,研究结果表明:红细胞平均体积与生长、水温无关;红细胞计数、红细胞沉降率、红细胞比积与水温呈明显相关而与生长较少相关;血浆总蛋白、红细胞平均血红蛋白量、红细胞平均血红蛋白量、红细胞平均血红蛋白量、血糖与水温和生长都相关。上述现象的机理虽有待于深入研究,然而有一点是明显的,评判一尾团头鲂的血液指标正常与否,不

表 5 团头鲂九项血液指标正常值区间

估计	95-70%分布估计		95-70%	分布估计		₹±25 区间	
指标 ,	下限	上限	下限区间	上限区间	9570%容许区间	正态分布	
RBC(10*个/mm³)	185.30	274.95	183.00-187.50	270.50—280.00	183.00276.50	183.35—274.35	
ESR(mm/hr.)	0.075	1.25	0.05-0.1	1.20-1.30	0.051.20	0 −1.30	
Ht(%)	36.30	68.84	34.39-38.00	67.31-70.37	34.39-70.00	35.56-67.08	
Hb(g/100ml)	4.46	9.87	4.37-4.55	9.69-10.04	4.409.88	5,03-10.35	
PTP(g/160ml)	2,69	5.98	2.62-2.75	5.95-6.07	2.666.02	2.32-6.04	
PGC(mg/100ml)	91.47	301.85	87.6595.39	275.00-328.70	87.97—310.19	63.07273.59	
$MCV(\mu^{\sharp})$	158.80	299.45	152.13-165.49	284.02-314.85	158.19-311.62	154.86-296.22	
MCH(Pg)	20.67	42.81	19.91-21.39	42.03-44.34	20.1843.96	22.11-45.47	
MCHC(%)	9.29	21,24	3.73-9.85	20.04-22.44	9.06-22.34	9.38-21.02	
	1	, ,		l .	I		

仅要考察其值是否落在表 (5) 所给定的正常区间内,还要根据当时标本的体长、水温状况用表 (2)、表 (3) 具体地进行判定。例如血糖,从表 (3)可见,秋末至冬初,团头鲂的血糖含量明显上升,这可能是与越冬有关的一个正常生理现象,此时标本血糖值若高出正常值区间上限,不能认为是非正常现象。相反,若在春夏季,团头鲂的血糖值超过了 200mg/100ml,尽管未超过正常值区间上限,仍可认为血糖偏高。因此,本文在给出表 (5) 正常值区间的同时,又列出了表 (2)和表 (3),供读者在具体条件下判断血液指标值是否正常时参考。

表(5)给出用三种方法估计的正常值区间。 从表(5)可见,用分布估计方法得到的正常值区 间往往介于另两种方法之间,在相同的95— 70%概率保证下,区间范围较窄,因而结论较为 可靠。因此建议采用分布估计(PE)得到的正 常值区间作为标准正常值区间,而其它两种方 法估计得到的正常值区间可供参考。

从表(4)可见,红细胞沉降率的变异系数较大,这是由于我们所用的沉降管是克氏管造成的,在人体红细胞沉降率测定中,往往使用韦氏管。用韦氏管测定需要较多的血,这在技术上难以实现,故目前的鱼类血液学实验中大都用克氏管。克氏管虽有误差,但用量较少。鉴于

上述情况,红细胞沉降率这一指标可仅仅作为 参考指标。

本试验所采用的检测方法,除血液沉降率外,均为医学标准测定方法。因此,本试验得出团头鲂血液学的九个指标值,可作为养殖条件下团头鲂这九个血液指标的正常值标准。在具体使用过程中,考虑到因检测技术和方法不一致造成误差,要求测定方法与本研究方法一致。

参考文献

- [1] 朱心玲等 1985 草鱼血液学的研究 1 九项血液常 数的周年变化 水生生物学报 9(3): 248-257。
- [2] 米瑞美 1982 草鱼、鲤和鲢血液学指标的测定 淡水漁业 8(4): 10-16。
- [3] 林光华 1979 鲫鱼血液的研究 动物学报 25(3); 210--219。
- [4] 罗贯一 1983 黄鳝血液的实验 鱼类学论文 集 (第 三辑) 69-76 科学出版社。
- [5] 福州部队总医院编 1977 临床医学检验 上海科学 技术出版社。
- [6] Reed A. A. et al 1971 Infuence of statistical method used on the resulting estimate of normal range. Clinical Chemistry 17(4): 247-284.
- [7] Brunden M. N. et al 1970 A general method of determining normal ranges applied to blood values for dog. Am. J. Glin. Path. 53:332-339.
- [8] Miller W. R. et al 1983 Normal ranges for diagnostically important hematological and blood chemistry characteristics of rainbow trout (Salmo gairdneri). Can. J. Fish. Aquar. Sci. 40 (4):420-425.