DOI: 10.13859/j.cjz.201404013

萨罗罗非鱼 AQP3 cDNA 序列克隆及盐度 胁迫下组织表达特征

甘远迪 赵金良* Jeerawat Thammaratsuntorn 李传阳

上海海洋大学 农业部淡水水产种质资源重点实验室 上海 201306

摘要:利用 cDNA 末端快速扩增法(RACE) 克隆了萨罗罗非鱼(Sarotherodon melanothern) 鳃组织中水通 道蛋白3(AQP3)的 cDNA 序列。AQP3 cDNA 全长1894 bp,其中,开放阅读框912 bp,编码303 个氨基 酸,5'和3'非编码区长度分别为98 bp 和884 bp。氨基酸序列分析显示,萨罗罗非鱼 AQP3 与莫桑比克 罗非鱼(Oreochromis mossambicus) 同源性最高,达94%,含6个跨膜区。应用实时荧光定量 PCR 技术 (qRT-PCR) 检测了不同盐度胁迫下萨罗罗非鱼11 种组织中 AQP3 mRNA 的相对表达水平。0、15 盐度 下,鳃、肌肉、皮肤中表达水平相对较高,其他组织表达相对较低,且15 盐度中各组织的表达水平低于 0 盐度;30 盐度下,各组织以肠道表达量相对最高。推测在不同的渗透压调节作用中,萨罗罗非鱼通 过不同组织器官中 AQP3 来参与水的转运过程。

关键词:萨罗罗非鱼;水通道蛋白3;cDNA;组织表达;盐度胁迫 中图分类号:Q955 文献标识码:A 文章编号:0250-3263(2014)04-560-10

cDNA Cloning of Aquaporin 3 in *Sarotherodon melanothern* and Its Tissue Expression Patterns under Salinity Stress

GAN Yuan-Di ZHAO Jin-Liang* Jeerawat THAMMARATSUNTORN LI Chuan-Yang

Key Laboratory of Freshwater Fisheries Germplasm Resource, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China

Abstract: To understand the role of aquaporin 3 (AQP3) in osmoregulatory processes of Sarotherodon melanothern, the complete cDNA sequence of AQP3 was cloned from gills of S. melanothern using rapid amplification of cDNA ends (RACE). The full length of AQP3 cDNA was 1 894 bp, containing a 912 bp open reading frame encoding 303 amino acids, with a 98 bp 5' untranslated region (UTR) and a 884 bp 3'-UTR (Fig. 1). The amino acid sequence comparison showed that AQP3 of S. melanothern shared the highest identity with Oreochromis mossambicus (94%), and it processed six transmembrane domains (Fig. 3). Relative tissue expression levels of AQP3 mRNA under different salinity stresses were estimated by real-time quantitative PCR. Higher expression was detected in skin, gill and muscle than in other tissues at 0 and 15 salinity; moreover, the expression level in 15 salinity was lower than that in freshwater in all tissues (Fig. 5). The expression level was higher in intestine than in other tissues at 30 salinity (Fig. 5). The results suggest S. melanothern can utilize AQP3 in different tissues to respond to water transfer under different osmoregulation

* 通讯作者, E-mail: jlzhao@ shou. edu. cn;

第一作者介绍 甘远迪,男,硕士研究生;研究方向:水产动物遗传育种与繁殖; E-mail: 357259431@ qq. com。

收稿日期: 2013-10-23, 修回日期: 2014-02-10

基金项目 现代农业产业技术体系专项(No. CARS-49-4B),上海高校知识服务平台上海海洋大学水产动物遗传育种中心项目 (No. ZF1206);

processes.

Key words: Sarotherodon melanothern; Aquaporin 3; cDNA; Tissue expression; Salinity stress

渗透压调节是鱼类调节体内外渗透压平 衡,适应环境变化的重要生理活动。海水鱼类 通过排出多余盐分和吸收水分来维持体内渗透 压,而淡水鱼类则通过排出多余水分和吸收环 境离子来实现渗透压调节(李加儿等 2002)。 研究表明,鱼体内水分和离子的转运是由细胞 膜上多种水、离子通道蛋白和转运子共同作用 实现的(Whittamore 2012)。水通道蛋白 (aquaporin, AQP)即是通道蛋白之一,不仅对 水和离子转运起重要作用,而且还参与甘油、 尿素等含氮物质的转运,在鱼类渗透压调节中 发挥重要作用(Cutler et al. 2000, 2007)。

目前,不同生物中水通道蛋白共发现有13 个家族成员,分为三组,AQP0、AQP1、AQP2、 AQP4、AQP5、AQP6、AQP8 为一组, AQP11、 AQP12 为一组, AQP3、AQP7、AQP9、AQP10 为 一组(Cutler et al. 2007, 张乐颖等 2008)。硬 骨鱼类中, 仅有少数几种水通道蛋白, AQP0、 AQP1、AQP3、AQP8、AQP10 基因序列成功克隆 (MacIver et al. 2009, Kim et al. 2010)。对欧 洲鳗鲡(Anguilla anguilla) (Kim et al. 2010)、 日本鳗鲡(A. japonica) (MacIver et al. 2009)、 大西洋鳉鱼(Fundulus heteroclitus) (Jung et al. 2012)、欧洲狼鲈(Dicentrarchus labrax) (Giffard-Mena et al. 2007)和莫桑比克罗非鱼 (Oreochromis mossambicus) (Watanabe et al. 2005)等鱼类初步研究, AQP3 在很多组织中均 有表达,特别是主要渗透压器官如鳃、肾、肠、 皮肤等(Cutler et al. 2000, 2007), AQP3 可直 接或间接参与水的转运,或通过转运尿素和甘 油来调节细胞体积变化(Hirata et al. 2003, Watanabe et al. 2009)、提高离子细胞的渗透压 感应性 (Watanabe et al. 2009, Seale et al. 2012) 等, 发挥渗透调节作用 (Cutler et al. 2007)

萨罗罗非鱼(Sarotherodon melanothern)原 产于非洲西海岸与泻湖(Adépo-Gourène et al. 1998),耐盐能力极强,能在 100 盐度以上的 水域中正常生长与繁殖(Ouattara et al. 2009), 是开展鱼类渗透压调节机制研究的理想模型动 物。为此,本研究首次克隆了萨罗罗非鱼鳃中 水通道蛋白 AQP3 cDNA 全长序列,利用实时 荧光定量技术检测了在不同盐度胁迫条件下其 不同组织中 AQP3 mRNA 表达特征,为进一步 理解广盐性鱼类主要渗透调节器官及其渗透调 节作用积累基础资料。

1 材料与方法

1.1 材料

1.1.1 实验鱼 萨罗罗非鱼1龄鱼取自上海 海洋大学鱼类种质资源试验站,运回实验室 后,在水族箱中暂养、适应两周。各取 20 尾鱼 分别放入0盐度、15 盐度和 30 盐度中(15 盐度 和 30 盐度组是通过逐步提高盐度驯化使其适 应)。养殖一周后,每组各取 5 尾,麻醉后解 剖,分别取脑、鳃、肝、肾、胃、前肠、中肠、后肠、 心、皮肤、肌肉,用液氮速冻后置于-80℃冰箱 保存。

1.1.2 试剂 主要试剂为 Trizol RNA 提取试 剂,购自 Invitrogen, Premix Taq[™] (TaKaRa Taq[™] Version 2.0 plus dye)、pMD19-T 载体、 PrimeScript RT reagent Kit With gDNA Eraser、 SYBR (Premix Ex Taq 均购自宝生物工程(大 连)有限公司。SMARTerTM RACE cDNA Amplification Kit、Advantage 2 PCR Kit 购于 Clontech 公司,普通琼脂糖凝胶 DNA 回收试剂 盒、氨苄青霉素钠盐 AMP、X-Gal、IPTG、大肠杆 菌感受态 DH5a 均购自天根生化科技(北京) 有限公司。其他如酒精、氯仿、异丙醇等都是国 产分析纯,购自国药集团化学试剂有限公司。

1.2 实验方法

1.2.1 总 RNA 提取 取冻存的组织于盛有液 氮的研钵中,迅速研磨成粉末。按照 Trizol 使用说明提取总 RNA,用 RNase free ddH,O 溶

解,2% 琼脂糖凝胶电泳检测 RNA 的完整性和 丰度,并检测 RNA 浓度和 A₂₆₀/A₂₈₀值。样品 置于-80℃保存。

1.2.2 反转录 根据 PrimeScript RT reagent Kit With gDNA Eraser 的说明书操作,取1μl 鳃 总 RNA 为反转录模板合成第一链 cDNA,用于 PCR 扩增。

1.2.3 引物设计与 PCR 扩增 参照 GenBank 中莫桑比克罗非鱼 AQP3 cDNA 序列,用 Primer Premier 5.0 软件设计上、下游引物,引 物由生工生物工程(上海)有限公司合成(表 1)。以鳃 cDNA 为模板,参照 Premix Taq[™] (TaKaRa Taq[™] Version 2.0 plus dye)说明书进 行 AQP3 基因部分片段的 PCR 扩增,取 5 μ l PCR 扩增产物经 2% 的琼脂糖凝胶电泳检测。

1.2.4 目的基因片段的回收与克隆 目的片 段产物按照琼脂糖凝胶 DNA 回收试剂盒说明 书进行回收纯化。按 pMD19-T 载体使用说明, 取 1 μl 回收产物进行连接, 然后用大肠杆菌感 受态 DH5α 进行转化。转化产物在 37℃ 230 r/min条件下振荡培养 1 h 后,均匀涂抹于 含有 X-Gal、IPTG、Amp 的 LB 固体培养基上, 置于恒温培养箱中, 37℃培养(10~15 h)。取 出长出蓝白斑菌落的平板, 从中挑选白斑, 接 种于含 Amp 的 LB 液体培养基中,220 r/min 培养 10~12 h。最后进行菌落 PCR 验证并挑选 阳性克隆送到生工生物工程(上海)有限公司 进行测序。

1.2.5 全长 cDNA 扩增 根据得到的 AQP3 基因部分片段序列,分别设计 RACE 特异性引物。按照 SMARTer RACE cDNA Amplification Kit 说明合成用于 RACE 的 cDNA, 然后用 Advantage 2 PCR Kit 进行 PCR 扩增。产物经切割回收纯化,连接转化,菌液 PCR 检测及测序。

1.2.6 序列分析与结构特征 用 ORF(open reading frame) finder 软件(http://www.ncbi. nlm. nih. gov/gorf/orfig. cgi)寻找开放阅读框; 用 BLAST(http://www.ncbi. nlm. nih. gov/Blast. cgi)、Clustal W 等软件进行序列的验证、翻译及蛋白相似性分析; 用 MEGA 5.0 构建 NJ 系统进化树; 利用在线软件 http://web. expasy. org/protparam/分析 其理化性质; http://www.ch. embnet. org/software/TMPRED_form. html 预测跨膜区; http://www.cbs. dtu. dk/services/SignalP/预测信号肽; https:// www. predictprotein. org/预测蛋白质的一级结构。

引物名称	引物序列	用途
Primer names	Primer sequences (5' - 3')	Usage
S1F	CTTCGTCAAGCCTTAGCAGAGTG	AQP3 部分序列扩增
S1R	GGGACCAGGAACCAGCAAT	
5C	AAGAGTGAGATGCCTCGCAGGGTAAG	5′RACE 扩增
3K.	CCTTTCAACAATCCCATCCCTCA	3'RACE 第一次 PCR 扩增
30	GGTTTCCACACGGAGGGAGAGGGG	3'RACE 第二次 PCR 扩增
SAF	CGCAGAGAATAGATGACCAACT	荧光定量 PCR 内参引物
SAR	CCTTCACAGAGGCAAATACG	
SYF	TCCTTTCAACAATCCCATCC	荧光定量 PCR 基因引物
SYR	AAAACAGCAACCCCCCA	

表 1 AQP3 基因克隆、RACE 及荧光定量的引物 Table 1 Primers used for AQP3 cDNA cloning, RACE and qRT-PCR

1.2.7 实时荧光定量 PCR 根据获得的 AQP3 cDNA 序列,设计荧光定量 PCR 的引物。 并设计内参基因 β -actin 的荧光定量 PCR 引物。 以鳃组织总 RNA(浓度为 500 g/L)为模板,用 PrimeScript RT reagent Kit With gDNA 反转录成 cDNA,用 RNase free ddH₂O 做 5 个 3 倍梯度稀 释,各设 3 个重复。参照 SYBR ® Premix Ex Taq 说明书进行实时荧光定量 PCR 扩增,扩增 程序为:95℃ 30 s; 95℃ 5 s, 60℃ 30 s, 39 个 循环; 95℃ 10 s, 65 ~ 95℃ 溶解。根据结果调 整扩增体系,使目的基因和内参基因扩增效率 都接近 100%。

将提取的各组织总 RNA 浓度调成 500 g/L,用 PrimeScript RT reagent Kit With gDNA Eraser 将各组织总 RNA 反转录成 cDNA 模板,然后使用 SYBR @ Premix Ex Taq 进行荧 光定量反应,扩增程序与标准曲线的扩增程序 相同。结果采用 2^{-ΔΔCt}法对不同组织的表达 量进行比较分析。

2 结果与分析

2.1 萨罗罗非鱼 AQP3 cDNA 序列 以萨罗 罗非鱼鳃总 RNA 为模板, 扩增拼接得到 AQP3 cDNA 全长序列, 其中编码区 912 bp, 编码 303 个氨基酸, 5'非编码区和 3'非编码区分别为 98 bp 和 884 bp (GenBank 登录号: KF536030.1)(图1)。

2.2 萨罗罗非鱼 AQP3 氨基酸序列同源性及 系统进化 BLAST 同源比对,萨罗罗非鱼 AQP3 氨基酸序列与莫桑比克罗非鱼 (BAD20708.1)、尼罗罗非鱼(O. niloticus, XP-003456113.1)、斑马宫丽鱼(Maylandia zebra, XP-004544455.1)、日本鳗鲡(BAH89253.1)、 欧洲鳗鲡(CAC85286.1)、斑马鱼(Danio rerio, NP-998633.1)、小家鼠(Mus musculus, NP-057898.2)、绵羊(Ovis aries, AAF14366.1)、人 类(Homo sapiens, NP-004916.1)的同源性分别 为94%、93%、93%、75%、74%、73%、65%、 64%、64%(图2)。萨罗罗非鱼 AQP3 氨基酸 序列和其他生物的 AQP3 氨基酸序列一样,都 具有水通道蛋白家族的特征性序列,即两个 NPA(天冬酰胺-脯氨酸-丙氨酸)(Verkman et al. 2000)。

利用在线软件分析, 萨罗罗非鱼 AQP3 相 对分子质量为 32 997.5, 理论等电点为 8.69, 平均亲水性为 0.507。信号肽预测结果显示, N 端前 27 个为信号肽。跨膜区预测结果,显 示存在 6 个跨膜区, 跨膜位点分别为 29~45、 54~77、105~124、160~178、192~209、242~ 262(图 3)。蛋白质结构预测发现存在 4 个 N 端糖基化位点、1 个蛋白激酶 C 磷酸化位点、3 个酪蛋白激酶 I 磷酸化位点、6 个 N 端酰基化 位点、1 个焦激肽位点。有7 个半胱氨酸, 但均 不能形成二硫键。

用 Clustal X 软件对 AQP3 氨基酸序列进行 多重比对, MEGA 5.0 构建 AQP3 NJ 系统进化 树(图 4)。从图中可以看出,鱼类独立聚成一 支,其中,萨罗罗非鱼与尼罗罗非鱼、莫桑比 克罗非鱼、斑马宫丽鱼聚为一支,然后再与其 他硬骨鱼聚为一支。物种间亲缘关系与其传统 分类地位一致。

2.3 不同盐度下萨罗罗非鱼 AQP3 基因的组 织相对表达量 利用 qRT-PCR 检测了不同盐 度条件下萨罗罗非鱼各组织中 AQP3 mRNA 的 相对表达量, AQP3 mRNA 在各组织中均有表 达(图5)。0盐度下, AQP3 mRNA 在皮肤、鳃、 肌肉中的表达量显著高于其他组织: 15 盐度 下 AQP3 mRNA 组织表达特征和 0 盐度相似, 仍以皮肤、鳃、肌肉中表达量较高;而 30 盐度 下,肠道中的表达量较高,前、中、后肠的表达 量都显著高于其他组织,后肠表达量最高。不 同盐度下, 萨罗罗非鱼各组织 AOP3 mRNA 相 对表达变化趋势也不一致。随着盐度上升,肠 道(前、中、后肠)与肝相对表达水平在高盐度 (30盐度)呈现上升趋势;皮肤、鳃、肌肉组织 的相对表达量持续下降,0盐度的表达量是30 盐度表达量的上百倍;其他组织虽然表达量 低,总体也呈现下降的趋势。

61 TCATTTCTCACAGTCTCATCAACCTGTGACAAGAAGAC 99 $\underline{atggg} caga caa aagga ctatctgga aa aactgtcctg cttcttccag atccg caacctg \\$ M G R Q K D Y L E K L S C F F Q I R N L 159 ctgcttcgtcaagccctggcaagtgccttggcactctcatccttgtgatgtttggctgt L L R Q A L A E C L G T L I L V M F G C $219\ {\tt ggtgctgtggcccagcgggtgttgagcggtggttcccatggcttgttccttactggcaac}$ G A V A Q R V L S G G S H G L F L T G N 279 tttgccttcggctttgctgccatattaggcatcttggtctgtggccaaatatcaggtggc FAFGFAAILGIL VCGQ ISGG 339 cacctcaacccagcagtgacgttttccttgtgtctgcttggaagagagcgctggagaaag HLNPAV TFSLCLLG R E R W R K FPMYFLFQT Ι G AFF G S A - T T Y 459 ggcatgtactatgatgctcttttgctccgtcctggaagttttaatgtgactggacctaat GMYYDALLLRP G S F Ν V Т P N G 519 aacacagctggcatctttgctacttaccctgcgaggcatctcactcttgtcaacggtttc NTAGIFA ТҮРА RHL Т L V N G F 579 tttgaccagattattggtacaacagcactgatagtttgtattctggccattgtggatcct FDQIIGTTALIVC ILAIV D P 639 ttcaacaatcccatccctcaagggctggaggccttcactgtgggatttgtggttttggtc V FNNPIPQGLEAFT G F V V L V 699 attggattgtctatgggctttaattctggctatgcagtgaatcctgccagagactttgga I G L S M G F N S G Y A V N P A R DFG 759 ccacgtcttttcactgctatgtctgggtggggggttgctgttttcacggctagagattgc PRLFTAMSGWGVAV F TARDC 819 tggttcctggtccctatttttgccccattccttggctccattcttggtgtaatgatctac FLVPIFAPFLGS W I L G V MIY QLM VGFHT EGEAR D Κ Κ Q G Т QENV S Т Q LANV Т Ν Ν S Κ E A Т K 999 gaaatttactga EIY* 1011 GTGTTTTACAGAAACACAGCTAGTCACTGCATTTGGGAATACACAGTATAACACCAGCAT 1071 GTTTACTTCCTGCCACAACTATTTTTCTCTGACTGTCTTTGTCTGTTTGGATTTTTCCCC 1191 AGAATTACATTAATCCTTTTATGAGATGATTTTGTATTTCATTGTCTATAGCACTTCAGT 1311 TAGTGTATATATATATATATATATATACATATTCAGACAAGTTAAAATCTTTGATAAGTCGT 1371 TTCTGTGCATTTCTCAGCCTATTGTAATGTTAATATCTCCGTTCAGGAAAACAGTCGCTC 1491 AGTTGATAACAGTCAGCGACATATTTGTGCAGACTGTGTCAGCTGTGTCTTTTTGGTGTT 1551 GATAGATTGTGGTAAGATTATAAGCCTCCATCACAATCTTTCCTCTGAAACCAGCTAAAG 1611 CTGCTATCTTTTTAAAAACCAAACTTTGTCCCTGAAAAACTGAACACTCACAAGCACTTTC 1671 ATTTTCATGCCTGAAACTACTGTTAAGAAACAACAGTTATATTCCATGTGCAGAAACATA 1731 TTCCCTATGATCTTCAATGTTTATTGTCTCTTTAATGAGTGTGTATTCACTGAGGGGTAC 1791 CAGATTGGAGAGTAAATATTTTGCAAGTCGGGTAAGGGGAAATACTTTTGCATTTATACA 图 1 萨罗罗非鱼 AQP3 基因 cDNA 序列和推导氨基酸序列

Fig. 1 cDNA and deduced amino acid sequence of Sarotherodon melanothern AQP3 gene

下划线示起始密码子; *示终止密码子; 灰底部分示 Ploy(A)尾巴; 大写字母示 5'和 3'非编码区。 The start codon ATG is underlined; the stop codon is indicated by an asterisk; the ploy A signal is shaded in gray; the uppercase indicates 5' and 3' untranslated regions.

3 讨 论

本研究通过 RACE 技术克隆了萨罗罗非鱼 水通道蛋白 AQP3 的全长 cDNA 序列,其推导 的氨基酸序列中具有水通道蛋白家族的特征序 列:即2个 NPA 序列(天冬酰胺-脯氨酸-丙氨 酸)。序列对比显示,该 cDNA 序列与莫桑比 克罗非鱼 AQP3 cDNA 序列最为相似,氨基酸 同源性高达94%。系统进化关系显示,萨罗罗 非鱼与尼罗罗非鱼、莫桑比克罗非鱼、宫丽斑马 鱼最先聚为一支。因此,初步确认该 cDNA 序 列为萨罗罗非鱼水通道蛋白 AQP3。

荧光定量 PCR 结果分析显示,不同盐度 下萨罗罗非鱼 AQP3 mRNA 在各组织中均有表 达,0、15 盐度下,鳃、皮肤、肌肉相对表达量高 于其他组织,30 盐度则是肠道表达量最高。

-KE 296

-KE 290

-KE 213

-KE 290

*:

:: ::* .:

RLLRQGLAECLGTLILVMFGCGAVAQVVLSAGSHGMFLTVN 60 日本鳗鲡 Anguilla japonica MGKQKFYLDKLARTFQIRNRLLRQGLAECLGTLILVMFGCGAVAQVVLSAGSHGLFLTVN 60 欧洲鳗鲡 Anguilla anguilla 莫桑比克罗非鱼 Oreochromis mossambicus MGRQKEYLDKLSRFFQIRNLLLRQALAECLGTLILVMFGCGAVAQRVLSGGSHGLFLTVN 60 尼罗罗非鱼 Oreochromis niloticus IGRQKEYLDKLSRFFQTRNLLLRQALAECLGTLILVMFGCGAVAQRVLSGGSHGLFLTVN 60 斑马宫丽鱼 Maylandia zebra IGRQKEYLGKLSRFFQIRNLLLRQALAECLGTLILVMFGCGAVAQRVLSGGSHGLFLTVN 60 IGRQKDYLEKLSCFFQIRNLLLRQALAECLGTLILVMFGCGAVAQRVLSGGSHGLFLTGN 60 萨罗罗非鱼 Sarotherodon melanotheron 斑马鱼 Danio rerio MGWQKSVLDKLAQTFQIRNKLLRQGLAECLGTLILVMFGCGSLAQLKLSEGSHGLFLTAN 60 小家鼠 Mus musculus KELMNRCGEMLHIRYRLLRQALAECLGTLILVMFGCGSVAQVVLSRGTHGGFLTIN 60 绵羊 Ovis aries 人 Homo sapiens EMLHIRYRLLRQALAECLGTLILVMFGCGSVAQVVLSRGTHGGFLTIN 60 日本鳗鲡 Anguilla japonica FAFGFAATLGILVSGQVSGGHLINPTIVTFAQCLLGREPWIKFPVYFLFQTLGAFLGSGVIF 120 FAFGFGATLGILVCGQVSGGHLNPTVTFAQCLLGREPWIKFPVYFLFQTLGAFLGSGVIF 120 欧洲鳗鲡 Anguilla anguilla FAFGFAAMLGILVCGQVSGGHLNPAVTFALCLLGRERWRKFPMYFLFQTIGAFFGSAIIF 120 莫桑比克罗非鱼 Oreochromis mossambicus FAFGFAAMLGILVCGQVSGGHLNPAVTFALCLLGRERWRKFPMYFLFQTIGAFFGSAIIF 120 尼罗罗非鱼 Oreochromis niloticus 斑马宫丽鱼 Maylandia zebra FAFGFAAMLGILVCGQVSGGHLNPAVTFALCLLGRERWRKFPMYFLFQTIGAFFGSAIIF 120 FAFGFAAILGILVCGQISGGHLNPAVTFSLCLLGRERWRKFPMYFLFQTIGAFFGSAIIY 120 萨罗罗非鱼 Sarotherodon melanotheron 斑马鱼 Danio rerio LAFGFGATLGILVCGQVSGGHLNPAVTFALCLLGREKWRKFPVYFLFQTLGSFLGAAIIF 120 LAFGFAVTLGILVAGQVSGAHLNPAVTFAMCFLAREPWIKLPIYALAQTLGAFLGAGIVF 120 小家鼠 Mus musculus 编羊 Ovis aries -SGAHLNPAVTFAMCFLAREPWIKLPVYTLAQTLGAFLGAGIIF 43 人 Homo sapiens LAFGFAVTLGILIAGQVSGAHLNPAVTFAMCFLAREPWIKLPIYTLAQTLGAFLGAGIVF 120 **.****:***: *:*.** * *:*:* * **:*:*::::: 日本鳗鲡 Anguilla japonica GLYYDALWN-FGKND-LIVVGVNATAGIFATYPSDHLTIVNGFFDQLIGTAALIVCILAI 178 欧洲鳗鲡 Anguilla anguilla GLYYDAMWD-FGKND-LIVVGEKATAGIFATYPSNHLTLLNGFFDQLIGTAALIVCILAI 178 莫桑比克罗非鱼 Oreochromis mossambicus GMYYDALLLRPGSFN----LTSTNNTAGIFATYPARHLTLVNGFFDQIIGTTALIVCVLAI 177 尼罗罗非鱼 Oreochromis niloticus GMYYDALLLRPGSFN----LTSTNNTAGIFATYPARHLTLVNGFFDQIIGTTALIVCVLAI 177 GMYYDALLLRPGSFN----FTSINNTAGIFSTYPARHLTLVNGFFDQIIGTTALIVCVLAI 177 斑马宫丽鱼 Maylandia zebra GMYYDALLLRPGSFN----VTGPNNTAGIFATYPARHLTLVNGFFDQIIGTTALIVCILAI 177 萨罗罗非鱼 Sarotherodon melanotheron 斑马鱼 Danio rerio AEYHDAIYDYAGESNELLVLGEKETAGIFATYPSKYLTPLNGFFDQVIGTASLIVCILAI 180 小家鼠 Mus musculus GLYYDAIWAFANNEL--FVSGPNGTAGIFATYPSGHLDMVNGFFDQFIGTAALIVCVLAI 178 编羊 Ovis aries GLYYDAIWAFANNQL--IVSGPNGTAGIFATYPSGHLDMVNGFFDQFIGTASLIVCVLAI 101 人 Homo sapiens GLYYDAIWHFADNQL--FVSGPNGTAGIFATYPSGHLDMINGFFDQFIGTASLIVCVLAI 178 . : *****: ***: :* :*****: ***: ****: ****: . *:**: 日本鳗鲡 Anguilla japonica VDPYNNPIPRGLEAFTVGFVVLVIGLSMGFNSGYAVNPARDFGPRLFTALAGWGREVFTA 238 欧洲鳗鲡 Anguilla anguilla VDPYNNPIPRGLEAFTVGFVVLVIGLSMGFNSGYAVNPARDFGPRLFTALAGWGREVFTA 238 莫桑比克罗非鱼 Oreochromis mossambicus VDPFNNPIPQGLEAFTVGFVVLVIGLSMGFNSGYAVNPARDFGPRLFTSMSGWGGAVFTA 237 VDPYNNPIPQGLEAFTVGFVVLVIGLSMGFNSGYAVNPARDFGPRLFTSMSGWGGAVFTA 237 尼罗罗非鱼 Oreochromis niloticus VDPYNNPIPQGLEAFTVGFVVLVIGLSMGFNSGYAVNPARDFGPRLFTSMSGWGGAVFTA 237 斑马宫丽鱼 Maylandia zebra VDPFNNPIPQGLEAFTVGFVVLVIGLSMGFNSGYAVNPARDFGPRLFTAMSGWGVAVFTA 237 萨罗罗非鱼 Sarotherodon melanotheron VDPYNNPIPQGLEAFTVGFSVLIIGLSMGFNSGYAVNPARDFGPRLFTAMAGWGSEVFTA 240 斑马鱼 Danio rerio 小家鼠 Mus musculus VDPYNNPVPRGLEAFTVGLVVLVIGTSMGFNSGYAVNPARDFGPRLFTALAGWGSEVFTT 238 绵羊 Ovis aries VDPYNNPVPRSLEAFTVGLVVLVIGTSMGFNSGYAVNPARDFGPRLFTAIAGWGSEVFTT 161 人 Homo sapiens VDPYNNPVPRGLEAFTVGLVVLVIGTSMGFNSGYAVNPARDFGPRLFTALAGWGSAVFTT 238 日本鳗鲡 Anguilla japonica KSYWFFVPIFAPFLGTVVGVLVYQLMVGFHVEGEARDKMETTEDERIKLSNVGT----KD 294 欧洲鳗鲡 Anguilla anguilla HSYWFFVPIFAPFLGTVVGVLVYQLTVGFHVEGEARDKMEATEDERIKLSNVAT----KD 294 莫桑比克罗非鱼 Oreochromis mossambicus RDCWFLVP1FAPFLGS1LGVV1YQLMVGFHTEGEARDKKQGTVQENLQLTNVASSNNSKE 297 尼罗罗非鱼 Oreochromis niloticus RDCWFLVP1FAPFLGA1LGVL1YQLMVGFHTEGEARDKKQGTVQENLQLANVASSNNSKE 297 斑马宫丽鱼 Maylandia zebra RDCWFLVP1FAPFLGS1LGVV1YQLMVGFHTEGEARDKKQGTVQQNLQLANVASSNNSKE 297 RDCWFLVP1FAPFLGS1LGVM1YQLMVGFHTEGEARDKKQGTVQENVQLANVTSTNNSKE 297 萨罗罗非鱼 Sarotherodon melanotheron RDYWFLVPIFAPFIGAVIGVIVYQLMVGWHVEGEARDKKAKAREEVMNLNDVAS-斑马鱼 Danio rerio 小家鼠 Mus musculus GRHWWWVPIVSPLLGSIAGVFVYQLMIGCHLE----QPPPSTEEENVKLAHMKH-GRHWWWVPIVSPLLGSIAGVFVYQLMIGCHLE----PPPPSTDEENVKLSHMKH-编羊 Ovis aries 人 Homo sapiens GQHWWWVPIVSPLLGSIAGVFVYQLMIGCHLE----QPPPSNEEENVKLAHVKH-*: ***.:*:: **.:*** :* * * 日本鳗鲡 Anguilla japonica AA---- 296 欧洲鳗鲡 Anguilla anguilla AA---- 296 莫桑比克罗非鱼 Oreochromis mossambicus ATKEIY 303 ATKEIY 303 尼罗罗非鱼 Oreochromis niloticus ATKEIY 303 斑马宫丽鱼 Maylandia zebra ATKEIY 303 萨罗罗非鱼 Sarotherodon melanotheron 斑马鱼 Danio rerio 小家鼠 Mus musculus

绵羊 Ovis aries

人 Homo sapiens

01---- 292 QI---- 215

图 2 脊椎动物 AQP3 氨基酸序列多重对比

QI---- 292

Fig. 2 Multiple sequences alignment of AQP3 amino acid in vertebrates

灰底部分示信号肽;方框区示水通道蛋白家族特征性序列 NPA;"*"示此位点氨基酸完全一致;":"示此位点氨基 酸保守:"."表示此位点氨基酸不相似。

Signal peptide is shaded in gray; motif sequences NPA of AQPs family are in squared. The identical amino aicds are indicated with asterisks. Conserved amino acids residues are denoted with colons. Non-similar amino acids are indicated with periods.

图 3 萨罗罗非鱼 AQP3 蛋白质跨膜区

Fig. 3 The transmembrane graphics of AQP3 protein of Sarotherodon melanothern

i->o示跨膜方向由内向外; o->i示跨膜方向由外向内。

i - so indicates transmembrane orientation is from inside to outside; o - si indicates transmembrane orientation is from outside to inside.

随着环境盐度上升,鳃、皮肤、肌肉中 AQP3 mRNA 表达逐渐下降,而肠道在 30 盐度表达 显著上升。不同盐度胁迫下,萨罗罗非鱼 AQP3 mRNA 的主要表达组织及其表达量变化 暗示鳃、皮肤、肌肉、肠道组织参与了不同的渗 透调节作用(排水作用、吸水作用)。

鳃是硬骨广盐性鱼类渗透压调节的主要器 官,是体内与外界环境进行离子和水交换的主 要场所。研究发现,当外界环境盐度升高时, 欧洲鳗鲡(MacIver et al. 2009)、日本鳗鲡 (Cutler et al. 2007)、大西洋鳉鱼(Jung et al. 2012)、欧洲狼鲈(Giffard-Mena et al. 2007, 2008)等鳃 AQP3 mRNA 表达量均表现为下降 趋势,但其下降比例不同。例如,淡水欧洲鳗 鲡适应海水后, AQP3 mRNA 表达量只有淡水 的 3%,而日本鳗鲡表达量仅降低 40% (Lignot et al. 2002, Cutler et al. 2007)。也有部分鱼 类鳃中 AQP3 mRNA 表达水平保持不变或者升 高现象,海水适应后的莫桑比克罗非鱼鳃中 AQP3 mRNA 表达量和淡水一致(Watanabe et al. 2005); 红大麻哈鱼(Oncorhynchus nerka)幼 鱼从淡水转入海水后, AQP3 mRNA 表达量增 加(Choi et al. 2013)。由此可见, 在环境盐度 变化时,不同鱼类鳃中 AQP3 应答反应与生理 作用并不一致。关于鳃中 AQP3 表达量在淡水 条件下高于海水的现象,有学者推断 AQP3 的 作用可能是通过转运水来调节细胞体积实现 的。在淡水条件下, 鳃上皮对水的通透性高 (Kammerer et al. 2010), 大量水分进入体内, 鳃上皮细胞 AQP3 可将由细胞顶端进入的水从 基底侧排出,防止上皮细胞膨胀破裂,达到调 节细胞体积目的(Cutler et al. 2001);海水条 件下,由于没有主动排水的必要,鳃 AQP3 表 达量相应减少。也有学者认为, AQP3 可能是 通过调节细胞内的尿素、甘油来调控鳃中细胞 体积(MacIver et al. 2009, Jung et al. 2012)。 本研究中,萨罗罗非鱼鳃 AQP3 mRNA 表达量 在0盐度下最高,随着盐度上升而表达下降,

图 4 脊椎动物 AQP3 系统进化树

标尺示遗传标度;树枝长度示进化距离;节点数字示置信度。

0.05 indicates genetic scale; Branch length indicates evolutionary distance; and bootstrap supporting values are shown at branch nodes.

30 盐度相对表达量最低,这和欧洲鳗鲡、日本 鳗鲡、大西洋鳉鱼、欧洲狼鲈等鱼的实验结果相 似。萨罗罗非鱼是广盐性鱼类,在淡水或低盐 度条件下,由于大量水分进入体内导致渗透压 失衡,因此,需要将体内多余水分排出体外。 而鳃 AQP3 mRNA 的高水平表达与体内水分排 出细胞作用表现一致。此外,皮肤、肌肉 AQP3 表达特征、表达变化也与鳃中基本相似。因此 推测,在淡水或低盐度环境中,为维持体内渗 透平衡, 萨罗罗非鱼主要通过鳃、皮肤、肌肉等 组织来实现排水作用。

在适应高盐度环境时,广盐性硬骨鱼类一般通过肠道吸收大量水分来弥补体内的渗透失水。鳗鲡从淡水进入海水后,食管、胃、肠道等 会对吞饮的海水依次脱盐,逐步降低消化道液 渗透压与血浆渗透压之间差距,当肠液渗透压 等于或低于血浆渗透压的水平时,肠道开始吸 收水分(Cutler et al. 2000, Ando et al. 2003,

图 5 不同盐度下萨罗罗非鱼各组织 AQP3 mRNA 相对表达量 Fig. 5 Relative expression of AQP3 mRNA in different tissues of Sarotherodon melanothern under different salinities

Kim et al. 2008)。本研究中,萨罗罗非鱼肠道 AQP3 mRNA 表达量在 15 盐度中最低、30 盐度 中最高,以后肠表现最为显著。肠道 AQP3 mRNA 表达量变化与莫桑比克罗非鱼和红大麻 哈鱼的表现相似(Watanabe et al. 2005, Choi et al. 2013)。研究表明, 广盐性鱼类, 如欧洲鳗 鲡 (Martinez et al. 2005)、欧洲狼鲈 (Giffard-Mena et al. 2007, 2008)、红大麻哈鱼等进入海 水后,肠道水通道蛋白表达量增加是为了加速 水分吸收(Cutler et al. 2007, Choi et al. 2013)。半咸水(10~15 盐度)是罗非鱼的近等 渗浓度,在近等渗盐度环境中时,由于渗透压 平衡,肠道中水的转运,不管是吸收还是排泄 活动水平最低,所以15盐度下萨罗罗非鱼肠 道 AQP3 mRNA 表达量最低。0 盐度下, 肠道 AQP3 mRNA 表达量较 15 盐度高,是因为低渗 条件下,需要将体内多余水分运出,肠道参与 体内部分水分排泄转运过程。在 30 盐度下, 受高渗胁迫,体内渗透失水,吞饮的海水需要 通过肠道吸收大量的水分维持渗透平衡。因 此,在30盐度下肠道中AQP3 mRNA的表达量 高,且后肠表达水平比前肠、中肠高。因此推 测,高盐度环境条件下,萨罗罗非鱼渗透调节 一个主要作用是吸水,吸水作用是主要是通过 肠道来实现的,且主要吸收部分是后肠。

参考文献

- Adépo-Gourène B, Pouyaud L, Teugel G G, et al. 1998. Morphological and genetic differentiation of West African populations of Sarotherodon melanotheron // Jean-Francois A. Genetics and Aquaculture in Africa. Paris: ORSTOM, 189 – 198.
- Ando M, Mukuda T, Kozaka T, et al. 2003. Water metabolism in the eel acclimated to sea water: from mouth to intestine. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 136(4): 621-633.
- Choi Y J, Shin H S, Kim N N, et al. 2013. Expression of aquaporin-3 and -8 mRNAs in the parr and smolt stages of sockeye salmon, Oncorhynchus nerka: Effects of cortisol treatment and seawater acclimation. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 165(2): 228 - 236.
- Cutler C P, Cramb G. 2000. Water transport and aquaporin expression in fish // Hohmann S, Nielsen S. Molecular Biology and Physiology of Water and Solute Transport. London, UK: Kluwer Academic Press, 433 - 441.
- Cutler C P, Cramb G. 2001. Molecular physiology of osmoregulation in eels and other teleosts: the role of transporter isoforms and gene duplication. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 130(3): 551-564.
- Cutler C P, Martinez A S, Cramb G. 2007. The role of aquaporin 3 in teleost fish. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 148 (1): 82 -91.
- Giffard-Mena I, Boulo V, Aujoulat F, et al. 2007. Aquaporin

molecular characterization in the sea-bass (*Dicentrarchus labrax*): The effect of salinity on AQP1 and AQP3 expression. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 148(2): 430-444.

- Giffard-Mena I, Lorin-Nebel C, Charmantier G, et al. 2008. Adaptation of the sea-bass (*Dicentrarchus labrax*) to fresh water: Role of aquaporins and Na⁺/K⁺-ATPases. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 150(3): 332-338.
- Hirata T, Kaneko T, Ono T, et al. 2003. Mechanism of acid adaptation of a fish living in a pH 3.5 lake. American Journal of Physiology, Regulatory, Integrative and Comparative Physiology, 284(5): 1199 – 1212.
- Jung D, Sato J D, Shaw J R, et al. 2012. Expression of aquaporin 3 in gills of the Atlantic killifish (*Fundulus heteroclitus*): Effects of seawater acclimation. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 161(3): 320 - 326.
- Kammerer B D, Cech J J Jr, Kültz D. 2010. Rapid changes in plasma cortisol, osmolality, and respiration in response to salinity stress in tilapia (*Oreochromis mossambicus*). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 157(3): 260 – 265.
- Kim Y K, Ideuchi H, Watanabe S, et al. 2008. Rectal water absorption in seawater-adapted Japanese eel Anguilla japonica. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 151(4): 533 - 541.
- Kim Y K, Watanabe S, Kaneko T, et al. 2010. Expression of aquaporins 3, 8 and 10 in the intestines of freshwater- and seawater-acclimated Japanese eels Anguilla japonica. Fisheries Science, 76(4): 695 - 702.
- Lignot J H, Cutler C P, Hazon N, et al. 2002. Immunolocalisation of aquaporin 3 in the gill and the gastrointestinal tract of the European eel Anguilla anguilla (L.). The Journal of Experimental Biology, 205(17): 2653 - 2663.
- MacIver B, Cutler C P, Yin J, et al. 2009. Expression and functional characterization of four aquaporin water channels from the European eel (Anguilla anguilla). The Journal of

Experimental Biology, 212(17): 2856 - 2863.

- Martinez A S, Cutler C P, Wilson G D, et al. 2005. Regulation of expression of two aquaporin homologs in the intestine of the European eel: effects of seawater acclimation and cortisol treatment. American Journal of Physiology, Regulatory, Integrative and Comparative Physiology, 288 (6): 1733 - 1743.
- Ouattara N G, Bodinier C, Nègre-Sadargues G, et al. 2009. Changes in gill ionocyte morphology and function following transfer from fresh to hypersaline waters in the tilapia Sarotherodon melanotheron. Aquaculture, 290 (1/2): 155 – 164.
- Seale A P, Watanabe S, Grau E G. 2012. Osmoreception: Perspectives on signal transduction and environmental modulation. General and Comparative Endocrinology, 176 (3): 354 - 360.
- Verkman A S, Mitra A K. 2000. Structure and function of aquaporin water channels. American Journal of Physiology, Renal Physiology, 278(1): 13 – 28.
- Watanabe S, Hirano T, Grau E G, et al. 2009. Osmosensitivity of prolactin cells is enhanced by the water channel aquaporin-3 in a euryhaline Mozambique tilapia (*Oreochromis* mossambicus). American Journal of Physiology, Regulatory, Integrative and Comparative Physiology, 296(2): 446-453.
- Watanabe S, Kaneko T, Aida K. 2005. Aquaporin-3 expressed in the basolateral membrane of gill chloride cells in Mozambique tilapia Oreochromis mossambicus adapted to freshwater and seawater. The Journal of Experimental Biology, 208 (14): 2673 - 2682.
- Whittamore J M. 2012. Osmoregulation and epithelial water transport: lessons from the intestine of marine teleost fish. Journal of Comparative Physiology B, 182(1): 1-39.
- 李加儿,刘匆,段彪. 2002. 提高鱼类渗透压调节能力研究进展. 水产养殖,(3):30-32.
- 张乐颖, 王加启, 卜登攀, 等. 2008. 水通道蛋白研究进展. 中国畜牧兽医, 35(11): 40-43.