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Spontaneous Fast-excitatory Postsynaptic Potential and Action
Potential in the Celiac Ganglion Neurons of Guinea-pig in Vitro
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Abstract The in vitro spontaneous fast-excitatory postsynaptic potential {-EPSP and spontaneous action potential
AP were recorded in the celiac ganglion CG neurons of Guinea-pig by the intracellular recording technique and
the related possible mechanism was analyzed. The spontaneous f-EPSP and AP had different frequencies in the CG
neurons . Amplitudes of -EPSP 13.26+6.74 mV n =34 and spontaneous {-EPSP 5.67 +2.66 mV n =26
were significantly different P < 0.01 . Amplitudes of AHP 8.99 £ 2.79 mV n =54 and spontaneous AHP
13.86+4.24 mV n =30 were also significantly different P < 0.01 . Spontaneous AP could be blocked by
hexamethonium or low Ca’* /high Mg®* Krebs solution whereas spontaneous f-EPSP could be partly blocked by the
same treatment. The results indicate that spontaneous bioelectricity exists in isolated CG neurons and this may be

induced by ACh and other calcium-independent neurotransmitters.
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Fig. 1 f-EPSP and AP induced by stimulating

greater splanchnic nerve
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A.{-EPSP upper trace induced by stimulating 4.0 V 1.0 ms
1.0 Hz lower trace greater splanchnic nerve B. AP upper trace
induced by stimulating 4.0 V 1.0 ms 1.0 Hz lower trace

greater splanchnic nerve. A and B came from a same neuron
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and f-EPSP was partly inhibited by Cs 10~* mol/L
recovery of f-EPSP and AP after washing with Krebs solution B.
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Table 1 The comparison of characteristics between the
spontaneous f-EPSP and the f-EPSP induced by

stimulating greater splanchnic nerve

Type of bioelectricity Amplitude mV ~ Duration ms

FEPSP 1 =34 13.26 +6.74  45.20 = 10.60

67+£2.66" 48.04+12.93
Spontaneous f-EPSP  n =26 5.67+£2.66 £12.9

t-test * P <0.01
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Table 2 The comparison of characteristics between the spontaneous AP
and the AP induced by stimulating greater splanchnic nerve

Type of bioelectricity APA mV APD ms AHPA mV AHPD ms
AP n=54 69.71 + 15.40 2.13%0.55 8.99+2.79 11.300.45
Spontaneous AP n =30 62.65+ 4.90 2.19+0.24 13.86+4.24" 13.10+2.34
t-test * P <0.01
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